INVESTIGATION OF BIOLOGICAL OBJECTS IN OPTICAL COHERENCE TOMOGRAPHY WITH DATA PROCESSING BY SEQUENTIAL MONTE CARLO METHOD

P. S. Skakov, M. A. Volynsky, I. P. Gurov, P. A. Ermolaev


Read the full article 
Article in Russian


Abstract

A possibility of sequential Monte Carlo method application for data processing in the full-field optical coherent tomography for studying of biological objects is demonstrated. The suggested algorithm is based on statistical approximation of the estimated parameters instead of nonlinear functional transformations. Experimental results of data processing in the studies using full-field optical coherence tomography system based on the Linnik micro-interferometer are given with subsequent signals envelope estimation by sequential Monte Carlo method. It was established that the processing results contain fewer artifacts caused by instability of the algorithm as compared with the previously obtained results using the extended Kalman filtering. Processing of the full-field optical coherence tomography system data involving the sequential Monte Carlo method gave the possibility to observe an object microstructure with resolution of about 1 μm. Experimental testing of sequential Monte Carlo method was performed by analyzing the signals obtained in the study of the front wing of the common house mosquito Culex pipiens, because this object has a small size, low thickness and complicated microstructure and, therefore, is a convenient test object. These results are in a good agreement with observations obtained by conventional microscopy techniques and can be of interest for specialists in the field of entomology and bioengineering.


Keywords: full-field time-domain optical coherence tomography, sequential Monte Carlo method, interferometric signals analysis, biological objects

References
 1.     Gurov I.P. Opticheskaya kogerentnaya tomografiya: printsipy, problemy i perspektivy [Optical coherence tomography: basics, problems and prospects]. In Problemy Kogerentnoi i Nelineinoi Optiki [Problems of Coherence and Nonlinear Optics]. Eds I.P. Gurov, S.A. Kozlov. St. Petersburg, SPbSU ITMO Publ., 2004, pp. 6–30.
2.     Tomlins P.H., Wang R.K. Theory, developments and applications of optical coherence tomography.Journal of Physics D: Applied Physics,2005, vol. 38, no. 15, pp. 2519–2535.doi: 10.1088/0022-3727/38/15/002
3.     Optical Coherence Tomography. Technology and Applications. Eds. W.Drexler, J.G.Fujimoto.Berlin: Springer-Verlag, 2008. 1376 p.
4.     Dubois A., Grieve K., Moneron G., Lecaque R., Vabre L., Boccara C. Ultrahigh-resolution full-field optical coherence tomography.AppliedOptics, 2004, vol. 43, no. 10, pp. 2874–2883.doi: 10.1364/AO.43.002874
5.     Oh W.Y., Bouma B.E., Iftimia N., Yun S.H., Yelin R., Tearney G.J. Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera.OpticsExpress,2006, vol. 14, no. 2, pp. 726–735.
6.     Gurov I., Volynsky M. Interference fringe analysis based on recurrence computational algorithms. Optics and Lasers in Engineering, 2012, vol. 50, no. 4, pp. 514–521. doi: 10.1016/j.optlaseng.2011.07.015
7.     Volynskii M.A., Gurov I.P., Zakharov A.S. Dynamic analysis of the signals in optical coherent tomography by the method of nonlinear Kalman filtering. Journal of Optical Technology, 2008, vol. 75, no. 10, pp. 682–686.
8.     Gurov I., Sheynihovich D. Interferometric data analysis based on Markov nonlinear filtering methodology.Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, vol. 17, no.1, pp. 21–27.
9.     Volynskii M.A., Gurov I.P., Zhukova E.V.Recursion algorithms for processing video information in optical-coherence-tomography systems. Journal of Optical Technology, 2012, vol. 79, no.11, pp. 698–703.
10.  Ermolaev P.A. Dinamicheskoe otsenivanie parametrov interferometricheskikh signalov metodom rasshirennoi fil'tratsii Kalmana vtorogo poryadka [Dynamic estimation for parameters of interference signals by the second order extended Kalman filtering]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no.2 (90), pp. 17–22.
11.  Wan E.A., van der Merwe R. The unscented Kalman filter, in Kalman Filtering and Neural Networks (ed. S. Haykin). NY: John Wiley & Sons, 2001, pp. 221–280. doi: 10.1002/0471221546.ch7
12.  Volynsky M.A. Rekurrentnye Algoritmy Obrabotki Dannykh v Opticheskoi Kogerentnoi Tomografii. Diss. kand. tekhn. nauk [Recurrent Algorithms of Data Processing in Optical Coherence Tomography. Candidate’s eng. sci. thesis]. St. Petersburg, NRUITMO, 2011, 112 p.
13.  Simon D. Optimal state estimation: Kalman, H∞, and Nonlinear Approaches. NY: John Wiley & Sons Inc., 2006, 526 p.
14.  Doucet A., de Freitas N., Gordon N. Sequential Monte Carlo methods in practice. NY: Springer-Verlag, 2001. 583 p.
15.  Malacara D. Optical Shop Testing. NY: Wiley, 1978,862 p.
16.  Kolomiitsov Yu.V. Interferometry: Osnovy Inzhenernoi Teorii, Primenenie [Interferometers: Fundamentals of Engineering Theory, Application]. Leningrad, Mashinostroenie Publ., 1976, 296 p.
17.  Volynsky M.A., Gurov I.P., Ermolaev P.A., Skakov P.S.Dinamicheskoe otsenivanie parametrov interferometricheskikh signalov na osnove posledovatel'nogo metoda Monte-Karlo [Dynamic parameters estimation of interferometric signals based on sequential Monte Carlo method]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 3 (91), pp. 18–23.
18.  Gutsevich A.V., Monchadskii A.S., Shtakel'berg A.A. Nasekomye Dvukrylye. Komary[Insects Diptera. Mosquitoes]. Leningrad, Nauka Publ., 1970,384 p.
Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика