COMPARATIVE ANALYSIS OF ENERGY ACCUMULATION SYSTEMS AND DETERMINATION OF OPTIMAL APPLICATION AREAS FOR MODERN SUPER FLYWHEELS

M. A. Sokolov, V. S. Tomasov, R. P. Jastrzębski


Read the full article 
Article in Russian


Abstract

The paper presents a review and comparative analysis of late years native and foreign literature on various energy storage devices: state of the art designs, application experience in various technical fields. Comparative characteristics of energy storage devices are formulated: efficiency, quality and stability. Typical characteristics are shown for such devices as electrochemical batteries, super capacitors, pumped hydroelectric storage, power systems based on compressed air and superconducting magnetic energy storage systems. The advantages and prospects of high-speed super flywheels as means of energy accumulation in the form of rotational kinetic energy are shown. High output power of a super flywheels energy storage system gives the possibility to use it as a buffer source of peak power. It is shown that super flywheels have great life cycle (over 20 years) and are environmental. A distinctive feature of these energy storage devices is their good scalability. It is demonstrated that super flywheels are especially effective in hybrid power systems that operate in a charge/discharge mode, and are used particularly in electric vehicles. The most important factors for space applications of the super flywheels are their modularity, high efficiency, no mechanical friction and long operating time without maintenance. Quick response to network disturbances and high power output can be used to maintain the desired power quality and overall network stability along with fulfilling energy accumulation needs.


Keywords: super flywheel, energy accumulation, energy storage, energy efficiency, magnetic bearings, renewable power sources

References
1.     Gurov I.P. Opticheskaya kogerentnaya tomografiya: printsipy, problemy i perspektivy [Optical coherence tomography: basics, problems and prospects]. In Problemy Kogerentnoi i Nelineinoi Optiki [Problems of Coherence and Nonlinear Optics]. Eds I.P. Gurov, S.A. Kozlov. St. Petersburg, SPbSU ITMO Publ., 2004, pp. 6–30.
2.     Tomlins P.H., Wang R.K. Theory, developments and applications of optical coherence tomography.Journal of Physics D: Applied Physics,2005, vol. 38, no. 15, pp. 2519–2535.doi: 10.1088/0022-3727/38/15/002
3.     Optical Coherence Tomography. Technology and Applications. Eds. W.Drexler, J.G.Fujimoto.Berlin: Springer-Verlag, 2008. 1376 p.
4.     Dubois A., Grieve K., Moneron G., Lecaque R., Vabre L., Boccara C. Ultrahigh-resolution full-field optical coherence tomography.AppliedOptics, 2004, vol. 43, no. 10, pp. 2874–2883.doi: 10.1364/AO.43.002874
5.     Oh W.Y., Bouma B.E., Iftimia N., Yun S.H., Yelin R., Tearney G.J. Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera.OpticsExpress,2006, vol. 14, no. 2, pp. 726–735.
6.     Gurov I., Volynsky M. Interference fringe analysis based on recurrence computational algorithms. Optics and Lasers in Engineering, 2012, vol. 50, no. 4, pp. 514–521. doi: 10.1016/j.optlaseng.2011.07.015
7.     Volynskii M.A., Gurov I.P., Zakharov A.S. Dynamic analysis of the signals in optical coherent tomography by the method of nonlinear Kalman filtering. Journal of Optical Technology, 2008, vol. 75, no. 10, pp. 682–686.
8.     Gurov I., Sheynihovich D. Interferometric data analysis based on Markov nonlinear filtering methodology.Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, vol. 17, no.1, pp. 21–27.
9.     Volynskii M.A., Gurov I.P., Zhukova E.V.Recursion algorithms for processing video information in optical-coherence-tomography systems. Journal of Optical Technology, 2012, vol. 79, no.11, pp. 698–703.
10.  Ermolaev P.A. Dinamicheskoe otsenivanie parametrov interferometricheskikh signalov metodom rasshirennoi fil'tratsii Kalmana vtorogo poryadka [Dynamic estimation for parameters of interference signals by the second order extended Kalman filtering]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no.2 (90), pp. 17–22.
11.  Wan E.A., van der Merwe R. The unscented Kalman filter, in Kalman Filtering and Neural Networks (ed. S. Haykin). NY: John Wiley & Sons, 2001, pp. 221–280. doi: 10.1002/0471221546.ch7
12.  Volynsky M.A. Rekurrentnye Algoritmy Obrabotki Dannykh v Opticheskoi Kogerentnoi Tomografii. Diss. kand. tekhn. nauk [Recurrent Algorithms of Data Processing in Optical Coherence Tomography. Candidate’s eng. sci. thesis]. St. Petersburg, NRUITMO, 2011, 112 p.
13.  Simon D. Optimal state estimation: Kalman, H∞, and Nonlinear Approaches. NY: John Wiley & Sons Inc., 2006, 526 p.
14.  Doucet A., de Freitas N., Gordon N. Sequential Monte Carlo methods in practice. NY: Springer-Verlag, 2001. 583 p.
15.  Malacara D. Optical Shop Testing. NY: Wiley, 1978,862 p.
16.  Kolomiitsov Yu.V. Interferometry: Osnovy Inzhenernoi Teorii, Primenenie [Interferometers: Fundamentals of Engineering Theory, Application]. Leningrad, Mashinostroenie Publ., 1976, 296 p.
17.  Volynsky M.A., Gurov I.P., Ermolaev P.A., Skakov P.S.Dinamicheskoe otsenivanie parametrov interferometricheskikh signalov na osnove posledovatel'nogo metoda Monte-Karlo [Dynamic parameters estimation of interferometric signals based on sequential Monte Carlo method]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 3 (91), pp. 18–23.
18.  Gutsevich A.V., Monchadskii A.S., Shtakel'berg A.A. Nasekomye Dvukrylye. Komary[Insects Diptera. Mosquitoes]. Leningrad, Nauka Publ., 1970,384 p.
Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика