DOI: 10.17586/2226-1494-2015-15-4-608-614


PHASE SHIFT INFLUENCE RESEARCH OF THE REFERENCE OSCILLATOR SIGNAL ON THE OUTPUT SIGNAL IN HOMODYNE DEMODULATION SCHEME

A. V. Volkov, E. S. Oskolkova, M. Y. Plotnikov, M. V. Mekhrengin, P. A. Shuklin


Read the full article 
Article in Russian

For citation: Volkov A.V., Oskolkova E.S., Plotnikov M.Yu., Mekhrengin M.V., Shuklin P.A. Phase shift influence research of the reference oscillator signal on the output signal in homodyne demodulation scheme. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol.15, no. 4, pp. 608–614.

Abstract
Subject of Research. Important feature of homodyne demodulation method based on the arctangent function approach is the phase shift between the reference oscillator signal and the interference signal. This phenomenon is caused by propagation delays of impulses in the optical interferometric sensor scheme and the analog low-pass filter in front of the phase modulator which produces the reference oscillator signal phase delay. There is multiplying of the reference oscillator signal and the interference signal in this homodyne demodulation scheme during its processing, and the phase shift between these signals leads to a distortion of the output signal. This paper deals with the findings of the phase shift influence of the reference oscillator signal by the output signal of the demodulation scheme at various parameters of the interference signal. Estimation of required accuracy is given of the phase shift compensation for the specified level distortion of the output signal. Method. Mathematical model is proposed in MATLAB. In this model, interference signal with changing parameters by a set of rules is passed through the considered demodulation scheme. This gives the possibility to obtain the dependences of the output signal amplitude from the reference oscillator signal phase shift, the operating point of the interferometer, the depth of phase modulation and amplitude of the measured phase signal. Results obtained during the simulation showed the need to compensate the reference oscillator signal phase shift. To assess this shift in the current homodyne demodulation scheme the original method of its determination has been proposed. The method is based on the transmission of the interference signal and the oscillator signal via one and the same band-pass filter that separates the phase modulation carrier frequency. According to the phase delay between the receiving signals, the value of the reference oscillator signal phase shift can be judged on. This shift can be corrected with knowledge of the value of the reference oscillator signal phase shift. Correction is achieved by making the required delay in reference oscillator signal. Main Results. The results of mathematical modeling show significant nonlinear dependences of the output signal on the reference oscillator signal phase shift at different values of the phase modulation depth, the operating point of the interferometer and the measured phase signal amplitude. It was found out that optimal values of the reference oscillator signal phase shift equal to 0, 180 and 360 provide minimum distortions of the output signal. It was shown that to achieve about 4% distortion level of the output signal phase shift compensation with an accuracy of 3% relative to period of the reference oscillator signal was required. Practical Significance. The original method making it possible to assess the value of the reference oscillator signal phase shift has been proposed. The reference oscillator signal phase shift compensation during considered homodyne demodulation scheme practical implementation provides the correctness of the scheme operation and increases the signal to noise ratio of the output signal.

Keywords: fiber optic sensor, homodyne demodulation methods, reference oscillator, phase shift, measured phase signal.

References
1. Fiber Optic Sensors: An Introduction for Engineers and Scientists. Ed. E. Udd. NY, John Wiley & Sons, 2011, 512 p. doi: 10.1002/9781118014103
2. Okosi T., Okamoto K., Otsu M., Nisihara H., Kuma K., Hatate K. Fiber-Optic Sensors. Leningrad, Energoatomidat Publ., 1990, 256 p. (in Russian)
3. Yin S., Ruffin P.B., Yu F.T.S. Fiber Optic Sensors. 2nd ed. CRC Press, 2008, 492 p.
4. Feng L., He J., Duan J.-Y., Li F., Liu Y.-L. Implementation of phase generated carrier technique for FBG laser sensor multiplexed system based on compact RIO. Proc. 1st Asia-Pacific Optical Fiber Sensors Conference, APOS 2008. Chengdu, China, 2008, art. 5226295. doi: 10.1109/APOS.2008.5226295
5. Dandridge A., Tveten A.B., Gialloronzi T.G. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier. IEEE J Quantum Electron, 1982, vol. QE-18, no. 10, pp. 1647–1653.
6. Varzhel S.V., Strigalev V.E. Metod ustraneniya vliyaniya signala pomekhi na chuvstvitel'nost' priema gidroakusticheskoi antenny na osnove volokonnykh Breggovskikh reshetok [Method for eliminating the noise signal influence on the sensitivity of receiving hydroacoustic antenna based on fiber Bragg gratings]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2010, no. 5 (69), pp. 5–8.
7. Li Y., Liu Z., Liu Y., Ma L., Tan Z., Jian S. Interferometric vibration sensor using phase-generated carrier method. Applied Optics, 2013, vol. 52, no. 25, pp. 6359–6363. doi: 10.1364/AO.52.006359
8. He C., Hang L., Wu B. Application of homodyne demodulation system in fiber optic sensors using phase generated carrier based on LabVIEW in pipeline leakage detection. Proceedings of SPIE - The International
Society for Optical Engineering, 2006, vol. 6150, art. 61502G. doi: 10.1117/12.676892
9. Li Y., Huang J., Gu H., Li R., Tan B., Chen L. All–digital real time demodulation system of fiber laser hydrophone using PGC method. Proc. 3rd Int. Conf. on Measuring Technology and Mechatronics Automation, ICMTMA 2011. Shanghai, China, 2011, vol. 1, pp. 359–362. doi: 10.1109/ICMTMA.2011.91
10. Wang L., Zhang M., Mao X., Liao Y. The arctangent approach of digital PGC demodulation for optic interferometric sensors. Proceedings of SPIE - The International Society for Optical Engineering, 2006, vol. 6292, art. 62921E. doi: 10.1117/12.678455
11. Plotnikov M., Kulikov A., Strigalev V. Issledovanie zavisimosti amplitudy vykhodnogo signala v skheme gomodinnoi demodulyatsii dlya fazovogo volokonno-opticheskogo datchika [Optical technologies investigation of output signal amplitude dependence in homodyne demodulation scheme for phase fiber-optic sensor]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 6 (88), pp. 18–22.
12. Plotnikov M.J., Kulikov A.V., Strigalev V.E., Meshkovsky I.K. Dynamic range analysis of the phase generated carrier demodulation technique. Advances in Optical Technologies, 2014, art. 815108. doi: 10.1155/2014/815108
13. Huang S.-C., Lin H. Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber. Applied Optics, 2007, vol. 46, no. 31, pp. 7594–7603. doi: 10.1364/AO.46.007594
14. Arteev V.A., Varzhel' S.V., Kulikov A.V. Raspredelennyi volokonno-opticheskii datchik akusticheskogo davleniya na breggovskikh reshetkakh. Sbornik Trudov VII Mezhdunarodnoi Konferentsii Molodykh Uchenykh i Spetsialistov "Optika-2011" [Proc. VII Int. Conf. on Optics 2011]. St. Petersburg, 2011, pp. 509–510.
15. Plotnikov M.Yu., Varzhel' S.V., Konnov K.A., Gribaev A.I., Kulikov A.V., Arteev V.A. Primenenie reshetok Bregga pri sozdanii sovremennykh volokonno-opticheskikh sensornykh system. Sbornik Trudov I Mezhdunarodnoi Nauchno-Prakticheskoi Konferentsii "Sensorica-2013" [Proc. 1st Int. Conf. Sensorica- 2013]. St. Petersburg, 2013, no. I, pp. 76–77.
16. Plotnikov M.Yu., Volkov A.V., Oskolkova E.S. Modelirovanie i issledovanie algoritmov demodulyatsii signalov volokonno-opticheskikh interferometricheskikh datchikov. Sbornik Tezisov III Vserossiiskogo Congressa Molodykh Uchenykh [Proc. III All-Russian Congress of Young Scientists]. St. Petersburg, 2014, pp. 364–365.
17. Plotnikov M.Yu., Volkov A.V., Oskolkova E.S. Issledovanie algoritmov demodulyatsii interferentsionnykh signalov. Sbornik Trudov II Mezhdunarodnoi Nauchno-Prakticheskoi Konferentsii "Sensorica-2014" [Proc. 2nd Int. Conf. Sensorica-2014]. St. Petersburg, 2014, pp. 99–100.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2018 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика