doi: 10.17586/2226-1494-2017-17-5-790-797


TRAJECTORY CONTROL FOR A ROBOT MOTION IN PRESENSE OF MOVING OBSTACLES

A. Y. Krasnov, S. A. Chepinsky, Chen Yifan, Liu Huimin, S. A. Kholunin


Read the full article  ';
Article in Russian

For citation: Krasnov A.Yu., Chepinskiy S.A., Chen Yifan, Liu Huimin, Kholunin S.A. Trajectory control for a robot motion in presense of moving obstacles. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 5, pp. 790–797 (in Russian). doi: 10.17586/2226-1494-2017-17-5-790-797

Abstract
The paper deals with the trajectory control synthesis of a mobile robot movement in a nonstationary external environment, in particular, in the presence of external mobile objects in the robot working space, by differential geometry methods and stabilization methods for invariant manifolds in the space of control object outputs. For control algorithm development, the relative dynamics of the control object and the external mobile object is considered and the methods of differential-geometric transformation of the initial model to the task-oriented coordinates are formulated. The latter formulates the initial problem in terms of longitudinal motion, orthogonal and angular deviations, and the proportional differential control algorithms are created with direct compensation of nonlinearities. The main results are presented by the task-oriented model of spatial motion and corresponding nonlinear control algorithms. To illustrate the efficiency of the proposed method, the rigid body motion modeling along a linear trajectory in the presence of an external mobile object moving through a desired linear trajectory crossing the working space is given as an example. In the example, the plant traverses an external moving object along a circular path and returns to the original desired trajectory.

Keywords: trajectory control, coordinate transformation, motion control

Acknowledgements. This work was supported by the Russian Federation President Grant No.14.Y31.16.9281-НШ, the Russian Foundation for Basic Research (Grant 17-58-53129) and by the Nature Science Foundation of China (Grant 61611530709 and 61503108)

References
 1.     Lekkas A., Fossen T. Minimization of cross-track and along-track errors for path tracking of marine underactuated vehicles. Proc. 2014 European Control Conference, ECC. Strasbourg, France, 2014, pp. 3004–3010. doi: 10.1109/ecc.2014.6862594
 
2.     Lee T., Leok M., McClamroch N.H. Geometric tracking control of a quadrotor UAV on SE(3). Proceedings of the IEEE Conference on Decision and Control. Atlanta, USA,2010, pp. 5420–5425. doi: 10.1109/CDC.2010.5717652
3.     Lapierre L., Soetanto D. Nonlinear path following control of an AUV. Ocean Engineering, 2007, vol. 34, no. 11-12, pp. 1734–1744. doi: 10.1016/j.oceaneng.2006.10.019
4.     Aguiar A.P., Hespanha J.P., Kokotovic P.V. Path-following for nonminimum phase systems removes performance limitations. IEEE Transactions on Automatic Control, 2005, vol. 50, no. 2, pp. 234–239. doi: 10.1109/TAC.2004.841924
5.     Hladio A., Nielsen C., Wang D. Path following for a class of mechanical systems. IEEE Transactions on Control Systems Technology, 2013, vol. 21, no. 6, pp. 2380–2390. doi: 10.1109/tcst.2012.2223470
6.     Banaszuk A., Hauser J. Feedback linearization of transverse dynamics for periodic orbits. Systems & Control Letters, 1995, vol. 26, no. 2, pp. 95–105. doi: 10.1016/0167-6911(94)00110-h
7.     Kolesnikov A.A., Veselov G.E., Popov A.N. et. al. Synergetic Methods for Complex Systems Managing: Mechanical and Eelectromechanical Systems. Moscow, KomKniga Publ., 2006, 300 p. (In Russian)
8.     Miroshnik I.V. Soglasovannoe Upravlemie Mnogokanal’nymi Sistemami [Matched Control of Multi-Channel Systems]. Leningrad, EnergoatomizdatPubl., 1990, 128 p. (In Russian)
9.     Miroshnik I.V., Nikiforov V.O., Fradkov A.L. Nonlinear and Adaptive Control of Complex Dynamic Systems. St. Petersburg, Nauka Publ., 2000, 549 p. (In Russian)
10.  Miroshnik I.V., Chepinsky S.A. Trajectory motion control of underactuated manipulators. Prepr. 7th IFAC Symposium on Robot Control. Wroclaw, Poland, 2003, pp. 105–110.
11.  Kapitanyuk Yu.A., Chepinskiy S.A. Task of control for multichannel dynamic system over piecewise smooth trajectory. Journal of Instrument Engineering, 2013, vol. 56, no. 4, pp. 65–70. (In Russian)
12.  Kapitanyuk Y.A., Chepinsky S.A. Control of mobile robot following a piecewise-smooth path. Gyroscopy and Navigation, 2013, vol. 4, no. 4, pp. 198–203. doi: 10.1134/s207510871304007x
13.  Kapitanyuk Y.A., Chepinskiy S.A., Kapitonov A.A. Geometric path following control of a rigid body based on the stabilization of sets. IFAC Proceedings Volumes, 2014, vol. 47, no. 3, pp. 7342–7347. doi: 10.3182/20140824-6-za-1003.02502
14.  Wang J., Kapitanyuk Y.A., Chepinskiy S.A., Liu D., Krasnov A.J. Geometric path following control in a moving frame. IFAC-PapersOnLine, 2015, vol. 48, no. 11, pp. 150–155. doi: 10.1016/j.ifacol.2015.09.175
15.  Nielsen C., Fulford C., Maggiore M. Path following using transverse feedback linearization: Application to a maglev positioning system. Proceedings of the American Control Conference, ACC'09. St. Louis, USA, 2009, pp. 3045–3050. doi: 10.1109/ACC.2009.5159998
16.  Akhtar A., Waslander S.L., Nielsen C. Path following for a quadrotor using dynamic extension and transverse feedback linearization. Proc. 51st IEEE Conference on Decision and Control, CDC. Maui, USA, 2012, pp. 3551–3556. doi: 10.1109/cdc.2012.6425945
17.  El-Hawwary M.I., Maggiore M. Case studies on passivity-based stabilisation of closed sets. International Journal of Control, 2011, vol. 84, no. 2, pp. 336–350. doi: 10.1080/00207179.2010.551303
18.  Roza A., Maggiore M. Position control for a class of vehicles in SE(3). Proc. 51st IEEE Conference on Decision and Control, CDC. Maui, USA, 2012, pp. 5631–5636. doi: 10.1109/cdc.2012.6425982
19.  Wang J., Krasnov A.Yu., Kapitanyuk Yu.A., Chepinskiy S.A., Chen Y., Liu H. Path following control algorithms implemented in a mobile robot with omni wheels. Gyroscopy and Navigation, 2016, vol. 24, no. 3, pp. 131–142. (In Russian)
Wang J., Chepinskiy S.A., Krasnov A.J., Zhang B., Liu H., Chen Y., Khvostov D.A. Geometric path following control for an omnidirectional mobile robot. Proc. 21st Int. Conf. on Methods and Models in Automation and Robotics, MMAR. Miedzyzdroje, Poland, 2016, pp. 1063–1068. doi: 10.1109/mmar.2016.7575285


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика