doi: 10.17586/2226-1494-2018-18-5-780-786


CONTROL OF THE MECHATRONIC SYSTEM WITH FLEXIBLE ROTATING LINK: THEORY AND EXPERIMENT

E. S. Skosarev, S. A. Kolyubin


Read the full article  ';
Article in Russian

For citation:
Skosarev E.S., Kolyubin S.A. Control of the mechatronic system with flexible rotating link: theory and experiment. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 5, pp. 780–786 (in Russian). doi: 10.17586/2226-1494-2018-18-5-780-786


Abstract
The paper discusses modeling and control of mechatronic systems with flexible links, which are widely used for manipulation tasks. At the first stage, a dynamic model of a mechatronic system with a flexible rotational link was obtained based on the Euler-Lagrange equations and the method of the assumed modes. The resulting model has finite dimensionality and can be easily adopted for simulation in order to study the dynamic characteristics of the system and further for trajectories planning and motion control. The algorithm for calculating feedforward control is presented, which enables transition of the link in a horizontal plane from the starting configuration to a given configuration in a finite time. In this case there is minimization of undesirable deformations at the end points of the trajectory caused by the elasticity of the link. The paper presents the results of the algorithm experimental verification on the mechatronic setup Quanser Rotary Flexible Link. The experiments demonstrated that the control goal is achieved for different rotation velocities, as well as they show a match between simulation and experimental results

Keywords: manipulators, robots with flexible links, modeling, dynamics, control

Acknowledgements. The work was carried out with the state financial support under the grant agreement "Technologies of cyber-physical systems: control, computation, security", project No. 617026.

References
  1. Kolyubin S.A. Dynamics of Robotic Systems. St. Petersburg, ITMO University Publ., 2017, 117 p. (in Russian)
  2. Hirzinger G., Fischer M. et al. Advances in robotics: the DLR experience. The International Journal of Robotics Research, 1999, vol. 18, no. 11, pp. 1064–1087. doi: 10.1177/02783649922067726
  3. Wang F.Y., Gao Y. Advanced Studies of Flexible Robotic Manipulators: Modeling, Design, Control, and Applications. World Scientific, 2003, 456 p.
  4. Sawodny O., Aschemann H., Bulach A. Mechatronical designed control of fire rescute turntable ladders as flexible link robots. Proc. 15th IFAC World Congress. Barcelona, 2002, vol. 35, no. 1, pp. 509–514. doi: 10.3182/20020721-6-es-1901.00897
  5. Aubrun J. Theory of the control structures by low-authority controllers. Journal of Guidance and Control, 1980, vol. 3, no. 5, pp. 444–451. doi: 10.2514/3.56019
  6. Siciliano B., Yuan B.S., Book W.J. Model reference adaptive control of a link flexible arm. Proc. 25th IEEE Conference on Decision and Control, 1986, pp. 91–95. doi: 10.1109/cdc.1986.267160
  7. Plunkell R., Lee C.T. Length optimization for constrained viscoelastic layer damping. Journal of the Acoustical Society of America, 1970, vol. 48, pp. 150–161. doi: 10.1121/1.1912112
  8. Cannon R.H., Schmitz E. Initial experiments on end-point control of a flexible one-link robot. The International Journal of Robotics Research, 1984, vol. 3, no. 3, pp. 62–75. doi: 10.1177/027836498400300303
  9. Harashima F., Ueshiba T. Adaptive control of flexible arm using the endpoint position sensing. Proc. Japan-USA Symposium on Flexible Automation. Osaka, 1986, pp. 225–229.
  10. Hastings G., Book W. A linear dynamic model for flexible robotic manipulators. IEEE Control Systems Magazine, 1987, vol. 7, no. 1, pp. 61–64. doi: 10.1109/MCS.1987.1105233
  11. Nagathan G., Soni A.H. Non-linear flexibility studies for spatial manipulators. Proc. IEEE Int. Conf. on Robotics and Automation. San Francisco, 1986, vol. 3, pp. 373–378. doi: 10.1109/ROBOT.1986.1087719
  12. Tokhi M., Azad A.K.M. Flexible Robot Manipulators: Modelling, Simulation and Control. London, 2008, 579 p.
  13. DeLuca A. Feedforward/feedback laws for the control of flexible robots. Proc. IEEE Int. Conf. on Robotics and Automation. Symposia Proceedings, 2000, vol. 1, pp. 233–240. doi: 10.1109/ROBOT.2000.844064
  14. DeLuca A., Valerio C., Del Vescovo D. Experiments on rest to rest motion of a flexible arm. Experimental Robotics VIII, 2003, vol. 5, pp. 338–349. doi: 10.1007/3-540-36268-1_30
  15. Meirovitch L. Elements of Vibration Analysis. NY, McGraw-Hill, 1975, 560 p.
  16. Znamenskaya L.N. Control of Elastic Vibrations. Moscow, Fizmatlit Publ., 2004, 176 p. (in Russian)
  17. DeLuca A., Di Giovanni G. Rest-to-rest motion of a one-link flexible arm. Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, 2001, vol. 2, pp. 923–928. doi: 10.1109/AIM.2001.936793
  18. User Manual: Flexible Link Experiment. Set Up and Configuration. Quanser Inc., 2012.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика