СТРУКТУРНЫЕ ОСОБЕННОСТИ ИТТЕРБИЙ-ЭРБИЕВЫХ НАТРИЕВО-ГЕРМАНАТНЫХ СТЕКОЛ ПО ДАННЫМ СПЕКТРОСКОПИИ КОМБИНАЦИОННОГО РАССЕЯНИЯ

И.М. Севастьянова^а, Ю.К. Фёдоров^а, К.С. Москалева^а, В.А. Асеев^а

^а Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация

Адрес для переписки: Sevastianova21@gmail.com

Информация о статье

Поступила в редакцию 16.06.16, принята к печати 31.08.16 doi: 10.17586/2226-1494-2016-16-5-809-815

Язык статьи – русский

Ссылка для цитирования: Севастьянова И.М., Фёдоров Ю.К., Москалева К.С., Асеев В.А. Структурные особенности иттербийэрбиевых натриево-германатных стекол по данным спектроскопии комбинационного рассеяния // Научно-технический вестник информационных технологий, механики и оптики. 2016. Т. 16. № 5. С. 809–815 doi: 10.17586/2226-1494-2016-16-5-809-815

Аннотация

Предмет исследования. Приведены результаты исследования рамановских спектров и люминесценции в видимой области натриево-германатных стекол состава 49GeO₂-13Na₂O-27Yb₂O₃-11La₂O₃-0,25Er₂O₃. В стекло дополнительно вводились по 5 мол.% следующих компонентов: MgO, BaO, Al₂O₃, PbO, Nb₂O₅, TiO₂, SiO₂, P₂O₅ с целью изучения влияния данных добавок на структуру стеклообразной матрицы и спектры антистоксовской люминесценции ионов эрбия. Метод. Спектры комбинационного рассеяния были записаны на спектрометре Renishaw inVia Raman Місгоscope. Источник возбуждения – гелий-неоновый лазер ($\lambda = 633$ нм) мощностью 50 Вт. Антистоксовская люминесценция ионов эрбия регистрировалась в спектральной области 450-750 нм (длина волны возбуждающего лазера 975 нм, мощность 1 Вт) при комнатной температуре. Основные результаты. Показано, что структура исходного стекла не меняется с введением Nb₂O₅, поскольку ниобий в любой координации играет сеткообразующую роль, строя с тетраэдрами [GeO₄] единую смешанную сетку. Введение второго стеклообразователя Р₂O₅ приводит к разрыхлению германатной основы за счет возникновения фосфатной подрешетки, что, в свою очередь, приводит к перераспределению относительной интенсивности ап-конверсионных полос люминесценции с максимумами на 540 и 670 нм по сравнению с исходным стеклом. При введении добавок PbO, MgO, Al₂O₃, TiO₂ возникает многоцентровость структуры. В случае добавки TiO₂ это приводит также к изменению относительных интенсивностей полос люминесценции эрбия.

Ключевые слова

германатные стекла, комбинационное рассеяние, эрбий, антистоксовская люминесценция, люминесценция

Благодарности

Исследование выполнено за счет гранта Российского научного фонда (проект №14-23-00136).

STRUCTURE FEATURES OF THE SODIUM-GERMANATE GLASSES DOPED WITH YTTERBIUM ERBIUM RETRIEVED FROM RAMAN SPECTROSCOPY

I.M. Sevastianova^a, Yu.K. Fedorov^a, K.S. Moskaleva^a, V.A. Aseev^a

^a ITMO University, Saint Petersburg, 197101, Russian Federation

Corresponding author: Sevastianova21@gmail.com

Article info

Received 16.06.16, accepted 31.08.16

doi: 10.17586/2226-1494-2016-16-5-809-815

Article in Russian

For citation: Sevastianova I.M., Fedorov Yu.K., Moskaleva K.S., Aseev V.A. Structure features of the sodium-germanate glasses doped with ytterbium erbium retrieved from raman spectroscopy. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 5, pp. 809-815. doi: 10.17586/2226-1494-2016-16-5-809-815

Abstract

Subject of Research. The paper deals with study of Raman spectra and luminescence spectra in the visible region of the sodium-germanate glass: 49 GeO₂ - 13 Na₂O - 27 Yb₂O₃ - 11 La₂O₃ - 0,25 Er₂O₃ and presents research results. In addition, this glass is doped with 5 mol% of the following components MgO, BaO, Al₂O₃, PbO, Nb₂O₅, TiO₂, SiO₂, P₂O₅ in order to study the effect of these additives on the structure of the glassy matrix and the anti-Stokes luminescence spectra of erbium ions. **Method.** Raman scattering spectra were recorded by Renishaw inVia Raman Microscope. Excitation source is a helium neon laser ($\lambda = 633$ nm) with power equal to 50Wt. Anti-Stokes luminescence of erbium ions was registered in spectral region of 450–750 nm at room temperature (excitation laser wavelength is 975 nm, power is 1Wt). **Main Results.** It was shown that the structure of the initial glass does not change with the introduction of niobium as Nb₂O₅ in any coordination plays a role of network forming, building a single mixed grid with tetrahedrons [GeO₄]. Introduction of the second glass former P₂O₅ leads to loosening germanate structure due to the appearance of the phosphate sublattice. This leads to a redistribution of the relative intensity of up-conversion luminescence bands with maxima at 540 and 670 nm compared with the initial glass. Introduction of additives PbO, MgO, Al₂O₃, TiO₂ results in a multicenter structure. In case of titanium oxide addition it leads to a change in the relative intensities of the erbium luminescence.

Keywords

germanate glasses, Raman scattering, erbium, anti-Stokes luminescence, luminescence

Acknowledgements

The research was carried out under a grant of the Russian Science Foundation (project No14-23-00136)

Введение

В настоящее время стекла, активированные ионами редкоземельных элементов (р.з.и.), как и ранее, представляют интерес для исследователей в связи с постоянно расширяющейся сферой их применения в различных областях науки и техники. Так, применение стекол, активированных р.з.и., в качестве люминофоров солнечных батарей [1], белых светоизлучающих диодов и датчиков, активных сред для волоконных лазеров и усилителей, мини- и микрочипов лазеров заставляет ученых постоянно углублять и расширять исследования влияния состава и структуры стеклообразных материалов на люминесцентные свойства р.з.и. Задача преобразования длинноволнового излучения в коротковолновое, в частности, из инфракрасной (ИК) области спектра в видимую, давно стоит перед разработчиками лазерных систем, а также систем на фотоэлектрических преобразователях. Одним из способов решения такой задачи является применение ап-конверсионных материалов. Такими материалами могут быть кристаллы и стекла, активированные р.з.и., например, иттербием и эрбием. Активированные кристаллы обладают высокими спектрально-люминесцентными характеристиками и занимают свою достойную нишу в техническом применении, несмотря на ряд недостатков, связанных с их производством [2]. Иттербий-эрбиевые стекла известны, в основном, как лазерные материалы, излучающие на λ = 1,54 мкм. Составы и технология производства иттербий-эрбиевых стекол, в основном на смешанной фосфатной основе, известны, хорошо исследованы и освоены [3]. Эти системы не пригодны для решения задач преобразования ИК излучения в видимое. Стекла других основ, в частности иттербий-эрбиевые силикатные и германатные, исследованы мало в части их пригодности для создания эффективных преобразователей излучения. В [4] на примере генерационных испытаний многокомпонентных иттербий-эрбиевых силикатных и германатных стекол показана принципиальная возможность использования таких стекол в качестве преобразователей излучения. Там же отмечена более высокая эффективность преобразования в германатных системах по сравнению с силикатными.

Структура двух- и трехкомпонентных германатных стекол исследована методом комбинационного рассеяния (КР) достаточно подробно, например [5–7], в том числе и стекол, активированных эрбием [8, 9]. В данных работах показано влияние структуры стекла на люминесцентные свойства иона эрбия. Однако структура более сложных (четырех- и более компонентных) систем практически не изучена. Также актуальной задачей является исследование влияния структуры стекла на антистоксовскую люминесценцию иона эрбия.

Образцы и методики измерения

В качестве исходного стекла было выбрано натриево-германатное стекло следующего состава: 49GeO_2 -13Na₂O-27Yb₂O₃-11La₂O₃-0,25Er₂O₃. Для исследования влияния химического состава на спектральные свойства стекла и люминесцентные характеристики пары Yb³⁺–Er³⁺ в данное стекло дополнительно вводили оксиды Mg, Ba, Al, Pb, Nb, Ti, представляющие собой модификаторы матрицы стекла, а также стеклообразующие оксиды SiO₂, P₂O₅ (таблица). Для варок были использованы оксиды и карбонаты вводимых элементов. Чистота шихтных материалов не ниже «ХЧ», «ОСЧ». Фосфорный ангидрид введен в виде метафосфата натрия. Все шихты были сухие. Синтез проведен из расчета на 10 г стекла в корундовых тиглях в силитовой печи без механической гомогенизации. Шихты были тщательно перемешаны и перетерты в агатовой ступке. Шихта полностью загружена в тигель при комнатной температуре. Тигли с шихтой были прогреты на крышке силитовой печи, разогретой до 1200 °C в течение 1 часа, и затем установлены в жаровое пространство печи при 1200 °C на подъеме температуры. За 10 мин выдержки при 1250 °C во всех тиглях образовался равномерный расплав стекла. При 1350 °C и выдержке 40 мин стекло стало прозрачным (отбор проб кварцевой палочкой). Тигли со стеклом были вынуты из печи и оставлены остывать на воздухе. После остывания стекло было извлечено, при необходимости проведен отжиг при температуре 480 °C.

№ образца	Добавка, 5 мол.%
1	SiO ₂
2	TiO ₂
3	Al_2O_3
4	Nb ₂ O ₅
5	PbO
6	MgO
7	BaO
8	P_2O_5

Таблица. Добавки в германатных стеклах

Спектры КР были записаны на спектрометре Renishaw inVia Raman Microscope, источник возбуждения – гелий-неоновый лазер ($\lambda = 633$ нм) мощностью 50 Вт.

Для получения детальной информации о закономерностях изменения структуры германатных стекол было проведено разложение спектров КР исследованных систем в виде суперпозиции элементарных полос с помощью программы OriginPro при условии: число элементарных полос выбиралось таким образом, чтобы при минимально возможном количестве полос контур суперпозиции максимально совпадал с контуром экспериментальных данных.

Люминесценция регистрировалась в спектральной области 450–750 нм при возбуждении непрерывным лазером с мощностью 1 Вт и длиной волны 975 нм при комнатной температуре. Полученные спектры люминесценции были нормированы на единицу по максимуму.

Результаты измерений. Комбинационное рассеяние

Экспериментальный спектр КР образца без добавок показан на рис. 1. На основании анализа литературных данных [10–17] полоса в среднечастотной области спектра (550 см⁻¹) КР приписана колебаниям тетраэдров [GeO₄], связанным между собой посредством мостиковых атомов кислорода. Полоса в высокочастотной области спектра КР (850 см⁻¹) отнесена к колебаниям тетраэдров [GeO₄] с различным числом немостиковых атомов кислорода, так называемым Q^n -единицам, где n – число мостиковых атомов кислорода [18].

Добавление в состав оксидов бария и ниобия фактически не влияет на структуру щелочногерманатных стекол. Об этом свидетельствуют спектры КР (рис. 2), которые одинаковы по форме для образцов с добавками BaO, Nb_2O_5 и стекла исходного состава (спектры нормированы на 1). В случае с добавкой Nb_2O_5 изменений не наблюдается из-за того, что ниобий в любой координации играет сеткообразующую роль, строя с тетраэдрами [GeO₄] единую смешанную сетку.

Спектр КР для образца с SiO₂ несколько отличается по форме от спектра исходного стекла (рис. 3). Из рис. 3 следует, что с введением SiO₂ наблюдается возрастание интенсивности полосы в области 550 см⁻¹ относительно интенсивности пика на 850 см⁻¹. Вероятно, это следствие того, что оксид кремния встраивается в структуру исходного стекла и образует тетраэдры с мостиковым атомом кислорода [18], помимо уже имеющихся германатных тетраэдров, что оказывает сшивающее действие на сетку стекла [19].

Рис. 2. Спектры комбинационного рассеяния для образцов с добавками BaO, Nb₂O₅ и стекла исходного состава

Рис. 3. Спектр комбинационного рассеяния для образца с SiO₂ и исходного стекла

При введении в состав оксида фосфора P_2O_5 на спектре КР появляется еще один пик (рис. 4) в спектральной области 950 см⁻¹, где проявляют себя симметричные колебания фосфатных тетраэдров с одним мостиковым кислородом. Это говорит о том, что в структуре стекла, помимо германатных тетраэдров, обособленно возникают фосфатные, оказывающие разрыхляющее действие на сетку стекла [20].

Рис. 4. Спектр комбинационного рассеяния для образца с Р₂О₅. Зеленые линии – результат разложения спектра на элементарные полосы. Красная линия – полоса, соответствующая колебаниям фосфатных тетраэдров

Сильное изменение формы спектров КР наблюдается у образцов с добавлением оксида магния, алюминия, свинца и титана (рис. 5). На данных спектрах происходит уменьшение интенсивности пика, соответствующего мостиковой связи, а также возникновение двух новых пиков. Это можно объяснить тем, что данные металлы, входя в структуру стекла, разрушают мостиковую связь и, встраиваясь между

тетраэдрами, образуют новые связи, колебаниям которых соответствуют волновые числа 480 cm^{-1} и 670 cm^{-1} .

Результаты измерений. Люминесценция

Рассмотрим спектры антистоксовской люминесценции.

Рис. 6. Спектры люминесценции исходного стекла и стекол с добавками P_2O_5 и TiO₂

Из рис. 6 видно, что введение дополнительных добавок приводит к перераспределению относительных интенсивностей люминесценции ионов эрбия. Данное перераспределение связано с изменением ближайшего окружения ионов эрбия. Введение в состав стекла оксида фосфора приводит к возрастанию относительной интенсивности красной полосы люминесценции над зеленой. Поскольку населенность на уровне ${}^{4}F_{9/2}$ создается за счет безызлучательной релаксации с уровня ${}^{4}S_{3/2}$, можно предположить, что разрыхляющее действие оксида фосфора на натриево-германатную матрицу стекла приводит к возрастанию безызлучательной релаксации возбуждения иона эрбия за счет появления дополнительных высокочастотных колебаний. Рост интенсивности красной люминесценции наблюдается и при введении TiO_2 , что может быть связано также с ростом вероятности безызлучательных переходов иона эрбия за счет увеличения высокочастотной составляющей колебательного спектра данного стекла.

Заключение

Проведены исследования комбинационного рассеяния и антистоксовской люминесценции натриево-германатных стекол, активированных иттербием и эрбием. Структура исходного стекла не изменяется из-за добавок BaO и Nb₂O₅. Введение второго стеклообразователя приводит или к «сшиванию» структуры германатного стекла в случае введения SiO₂, или к разрыхлению германатной основы в случае введения P₂O₅. Заметное изменение спектров комбинационного рассеяния по сравнению с исходным стеклом при введении добавок PbO, MgO, Al₂O₃, TiO₂ говорит о многоцентровости возникшей структуры. Показано, что введенные добавки влияют на баланс интенсивностей полос: наблюдается уменьшение интенсивности зеленой полосы относительно красной в разной степени в зависимости от введенных добавок. Так, введение в состав оксида фосфора дает увеличение интенсивности красной полосы (660 нм) относительно зеленой (550 нм) в 1,5 раза, а введение оксида титана – в 2,7 раз.

Литература

- Афанасьев В.П., Васильев В.Н., Игнатьев А.И., Колобкова Е.В., Никоноров Н.В., Сидоров А.И., Цехомский В.А. Новые люминесцентные стекла и стеклокерамики и перспективы их использования в солнечной энергетике // Оптический журнал. 2013. Т. 80. № 10. С. 69–79.
- 2. Каминский А.А. Лазерные кристаллы. Л.: Наука, 1975. 276 с.
- Асеев В.А., Никоноров Н.В., Пржевуский А.К., Федоров Ю.К., Ульяшенко А.М. Спектрально-люминесцентные свойства высококонцентрированных иттербий-эрбиевых фосфатных стекол для микролазеров // Оптический журнал. 2006. Т. 73. № 3. С. 20–25.
- Артемьев Е.Ф., Мурзин А.Г., Федоров Ю.К., Фромзель В.А. Особенности создания инверсной населенности на уровне ⁴I_{13/2} ионов эрбия в иттербий-эрбиевых стеклах // Квантовая электроника. 1981. № 9. С. 2071–2074.
- Beneventi P., Bersani D. et. al. Raman study of BizO₃-GeO₂-SiO₂ glasses // Journal of Non-Crystalline Solids. 1995. V. 193. P. 258–262.
- Mckeown D.A., Merzbacher C.I. Raman spectroscopic studies of BaO-Ga₂O₃-GeO₂ glasses // Journal of Non-Crystalline Solids. 1995. V. 183. N 1–2. P. 61–72.
- Kamitsos E.I., Yiannopoulos Y.D., Karakassides M.A., Chryssikos G.D., Jain H. Raman and infrared structural investigation of xRb₂O(1-x)GeO₂ glasses // Journal of Physical Chemistry. 1996. V. 100. N 28. P. 11755–11765.
- Wei T., Chen F., Jing X., Wang F., Tian Y., Xu S. Structure and spectroscopic properties of Er³⁺ doped germanate glass for midinfrared application // Solid State Science. 2014. V. 31. P. 54–61. doi: 10.1016/j.solidstatesciences.2014.02.019
- Wang R., Yang Z., Zhou D., Song Z., Qiu J. Structure and luminescent property of Er³⁺ doped germanate glasses // Journal of Non-Crystalline Solids. 2014. V. 383. P. 200–204. doi: 10.1016/j.jnoncrysol.2013.02.032
- Иванова Т.Н., Быков В.Н. Спектроскопия комбинационного рассеяния стекол и расплавов системы Na₂O-GeO₂ // Расплавы. 2010. № 1. С. 64–67.
- Hasegawa H., Shimada M., Koizumi M. Phase relations and crystallization of glass in the system PbO-GeO₂ // Journal of Materials Science. 1973. V. 8. N 12. P. 1725–1730. doi: 10.1007/BF00552183
- Verweij H., Buster J. The structure of lithium, sodium and potassium germanate glasses, studied by Raman scattering // Journal of Non-Crystalline Solids. 1979. V. 34. N 1. P. 81–99. doi: 10.1016/0022-3093(79)90008-5
- 13. Быков В.Н., Осипов А.А., Иванова Т.Н. Координационное число катионов-стеклообразователей в германатах и боратах (расплавы, стекла, кристаллы): исследование методом КР спектроскопии // Материалы XVI международного

References

- Afanas'ev V.P., Vasil'ev V.N., Ignat'ev A.I., Kolobkova E.V., Nikonorov N.V., Sidorov A.I., Tsekhomskii V.A. New luminescent glasses and prospects of using them in solar energy. *Journal of Optical Technology*, 2013, vol. 80, no. 10, pp. 635–641. doi: 10.1364/JOT.80.000635
- 2. Kaminskii A.A. *Laser Crystals*. Leningrad, Nauka Publ., 1975, 276 p.
- Aseev V.A., Nikonorov N.V., Ul'yashenko A.M., Przhevuskii A.K., Fedorov Yu.K. Spectroluminescence properties of highly concentrated ytterbium-erbium phosphate glasses for microlasers. *Journal of Optical Technology*, 2006, vol. 73, no. 3, pp. 164–169.
- Artem'em E.F., Murzin A.G., Fedorov Yu.K., Fromzel' V.A. Some characteristics of population inversion of the ⁴I_{13/2} level of erbium ions in ytterbium–erbium glasses. *Soviet Journal of Quantum Electronics*, 1981, vol. 11, no. 9, pp. 1266–1268.
- Beneventi P., Bersani D. et. al. Raman study of BizO₃-GeO₂-SiO₂ glasses. *Journal of Non-Crystalline Solids*, 1995, vol. 193, pp. 258–262.
- Mckeown D.A., Merzbacher C.I. Raman spectroscopic studies of BaO-Ga₂O₃-GeO₂ glasses. *Journal of Non-Crystalline Solids*, 1995, vol. 183, no. 1–2, pp. 61–72.
- Kamitsos E.I., Yiannopoulos Y.D., Karakassides M.A., Chryssikos G.D., Jain H. Raman and infrared structural investigation of xRb₂O(1-x)GeO₂ glasses. *Journal of Physical Chemistry*, 1996, vol. 100, no. 28, pp. 11755– 11765.
- Wei T., Chen F., Jing X., Wang F., Tian Y., Xu S. Structure and spectroscopic properties of Er³⁺ doped germanate glass for mid-infrared application. *Solid State Science*, 2014, vol. 31, pp. 54–61. doi: 10.1016/j.solidstatesciences.2014.02.019
- Wang R., Yang Z., Zhou D., Song Z., Qiu J. Structure and luminescent property of Er³⁺ doped germanate glasses. *Journal of Non-Crystalline Solids*, 2014, vol. 383, pp. 200–204. doi: 10.1016/j.jnoncrysol.2013.02.032
- Ivanova T.N., Bykov V.N. Raman spectroscopy of glasses and melt Na₂O-GeO₂ system. *Russian Metallurgy (Metally)*, 2010, no. 8, pp. 678–680. doi: 10.1134/S0036029510080033
- Hasegawa H., Shimada M., Koizumi M. Phase relations and crystallization of glass in the system PbO-GeO₂. *Journal of Materials Science*, 1973, vol. 8, no. 12, pp. 1725–1730. doi: 10.1007/BF00552183
- Verweij H., Buster J. The structure of lithium, sodium and potassium germanate glasses, studied by Raman scattering. *Journal of Non-Crystalline Solids*, 1979, vol. 34, no. 1, pp. 81–99. doi: 10.1016/0022-3093(79)90008-5
- 13. Bykov V.N., Osipov A.A., Ivanova T.N. Coordination

совещания "Кристаллохимия и рентгенография минералов". Миасс, Россия, 2007. С. 252–253.

- Лазарев А.Н., Миргородский А.П., Игнатьев А.П. Колебательные спектры сложных окислов. Л.: Наука, 1975. 296 с.
- 15. Иванова Т.Н., Королева О.Н. Сопоставление структуры силикатов и германатов натрия по данным спектроскопии комбинационного рассеяния // Материалы III Всероссийской молодежной научной конференции «Минералы: строение, свойства, методы исследования». Миасс, Россия, 2011. С. 152–155.
- Phillips J.C. Spectroscopic and morphological structure of tetrahedral oxide glasses // Solid State Physics. 1983. V. 37. P. 93–171. doi: 10.1016/S0081-1947(08)60666-9
- Henderson G.S., Fleet M.E. The structure of alkali germanate and silicate glasses by Raman spectroscopy // Transactions of the American Crystallographic Association. 1991. V. 27. P. 269–278.
- Немилов С.В. Оптическое материаловедение: оптические стекла. СПб.: СПбГУ ИТМО, 2011. 175 с.
- Пух В.П., Байкова Л.Г., Киреенко М.Ф., Тихонова Л.В., Казанникова Т.П., Синани А.Б. Атомная структура и прочность неорганических стекол // Физика твердого тела. 2005. Т. 47. № 5. С. 850–855.
- Шахгильдян Г.Ю. Фосфатные стекла, активированные наночастицами металлов и ионами редкоземельных элементов: автореф. ... канд. хим. наук. Москва, 2015. 141 с.

Авторы

Севастьянова Ирина Маратовна – техник, Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация, Sevastianova21@gmail.com

Фёдоров Юрий Кузьмич – кандидат технических наук, ведущий инженер, Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация, Sevastianova21@gmail.com

Москалева Ксения Сергеевна – инженер, Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация, Ks.moskaleva@gmail.com

Асеев Владимир Анатольевич – кандидат физикоматематических наук, доцент, Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация, aseev@oi.ifmo.ru number of cations glass-formers in germanate and borate (melts, glasses, crystals): a study by Raman spectroscopy. *Proc. XVI Int. Symposium on Crystal Chemistry and X-ray of Minerals*. Miass, Russia, 2007, pp. 252–253. (In Russian)

- Lazarev A.N., Mirgorodskii A.P., Ignat'ev A.P. Kolebatel'nye Spektry Slozhnykh Okislov [Vibrational Spectra of Complex Oxides]. Leningrad, Nauka Publ., 1975, 296 p.
- Ivanova T.N., Koroleva O.N. Comparison of sodium silicates and germanates structures according to Raman spectroscopy. Proc. III All-Russian Science Conference on Minerals: Structure, Properties, Methods of Research. Miass, Russia, 2011, pp. 152–155. (In Russian)
- Phillips J.C. Spectroscopic and morphological structure of tetrahedral oxide glasses. *Solid State Physics*, 1983, vol. 37, pp. 93–171. doi: 10.1016/S0081-1947(08)60666-9
- Henderson G.S., Fleet M.E. The structure of alkali germanate and silicate glasses by Raman spectroscopy. *Transactions of the American Crystallographic Association*, 1991, vol. 27, pp. 269–278.
- Nemilov S.V. Opticheskoe Materialovedenie: Opticheskie Stekla [Optical Materials Science: Optical Glasses]. St. Petersburg, SPbSU ITMO, 2011, 175 p.
- Pukh V.P., Baikova L.G., Kireenko M.F., Tikhonova L.V., Kazannikova T.P., Sinani A.B. Atomic structure and strength of inorganic glasses. *Physics of the Solid State*, 2005, vol. 47, no. 5, pp. 876–881. doi: 10.1134/1.1924848
- Shakhgil'dyan G.Yu. Fosfatnye Stekla, Aktivirovannye Nanochastitsami Metallov i Ionami Redkozemel'nykh Elementov: Avtoref. ... Kand. Khim. Nauk [Phosphate Glasses Activated by Nanoparticles of Metals and Ions of Rare Earth Elements. PhD Chem. Sci. Thesis]. Moscow, 2015, 141 p.

Authors

Irina M. Sevastianova – technician, ITMO University, Saint Petersburg, 197101, Russian Federation, Sevastianova21@gmail.com

Yuri K. Fedorov – PhD, leading engineer, ITMO University, Saint Petersburg, 197101, Russian Federation, sevastianova21@gmail.com

Kseniya S. Moskaleva – engineer, ITMO University, Saint Petersburg, 197101, Russian Federation, Ks.moskaleva@gmail.com

Vladimir A. Aseev – PhD, Associate professor, ITMO University, Saint Petersburg, 197101, Russian Federation, aseev@oi.ifmo.ru