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Abstract

Classical methods of error detection are not efficient when an attacker controls the process of error injection. Nowadays the
problem of providing high level of security for cryptographic systems, secret sharing schemes, flash memories and other
communications, computation and storage systems is central to information security. To solve this problem the algebraic
manipulation detection (AMD) codes have been proposed by Cramer at EUROCRYPT 2008. AMD codes represent a new
class of nonlinear error detection codes which minimize the maximum of error masking probability. The paper presents the
findings on behavior research of perfect nonlinear functions used in algebraic manipulation codes when the input distribution
is not uniform. This research gives the detail review of behavior of perfect nonlinear functions and the maximum of error
masking probability in case of different irreducible polynomials used for AMD codes. The received measurements can be
used for selection of coding function that can be the most suitable for encoding information in specific situation such as given
distribution of input codewords, irreducible polynomial and other parameters. The paper highlights the cases of parameter
changing in coding system which do not change the error masking probability distribution or the changes are insignificant.
These cases can be used to modify designs without reducing the stability of the entire integrity system to algebraic attacks
that gives the possibility to customize the system for practical needs. Such parameters as the distribution of input codewords
are also considered. They have an adverse effect on the stability of the system to algebraic manipulations. Changes in the
input codeword distribution should be monitored in the integrity system, and additional transformations for input codewords
should be used for security reasons or the encoding function within the integrity system should be changed.
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AHHOTAIUSA

CraHIapTHbIe METOAbI OOHApY)KEHHs OIIMOOK HEIP(EKTHBHBI B clydasX, KOTJa aTakyoUIMid KOHTPOIUpPYeT Mpolecc
BHezipeHus omnbok. [Ipodnema obecriedeHUs: BHICOKOTO YPOBHS 3alUThI Ul KPUITOrpa)MueCKUX CUCTEM, CXEM pa3eeHuUs
cekpeTa, Quieln NaMaTH U JPYTHX CHCTEM Hepeiadd, 00paboTKH 1 XpaHEeHHs MHOPMALMY SBIACTCS OAHOI U3 BaKHEHIIUX B
obnactn obecreueHust nHdopmanroHHOH Oe3zomacHocTH. st pemenus nanuoi npooiemst P. Kpamepom nHa EUROCRYPT
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2008 ObuTH mpemIoKEeHB! KOAbl, oOHapyxuBarome aiareOpandeckue Manumymsiuuu (AMD-komer). AMD-kozabl SBISFOTCS
HOBBIM KJIACCOM HEJIMHEHHBIX KOJIOB, OOHApY)KMBAIOIIMX OLIMOKH, KOTOPbIe MHHHMHM3HPYIOT MaKCHMajbHOE 3HA4CHUE
BEPOATHOCTH MACKHUPOBKM OIIMOKH. B JaHHOH cTarhe NPEACTaBICHbI pPE3YJAbTaThl HM3y4EHHS IOBEICHHE KOJIOB,
00Hapy)KHUBAIOIINX anreOpandecKre MaHUITYJIIUM, Ha OCHOBE COBEPIICHHO HEIMHEWHBIX (YHKIUH NpH HEpaBHOMEPHO
pacrpe/ielleHIN BXOIHBIX 3HaueHU. VccnenoBanye gaet noxpoOHbIi 0030p NOBEIECHHS COBEPIICHHO HENMHEIHBIX QyHKINI
U BEPOSTHOCTH MACKMPOBKH OMIMOKM IIPU Pa3iIMYHBIX HENPHBOJWMBIX MHOTOYIEHAX, HCIONb3yeMbIXx st AMD-komos.
TlomyuenHsle pe3ynsTaTel MOTYT OBITH HCIIOIB30BaHBI JUIT BEIOOpa (GyHKIIMH KOAMPOBAHHMs, KOTOPask HAaHOoJIee MOIAXOAUT IS
KOHKPETHOH CHTYyaIuH, 3a/1aBaeMOil pacrpeieIeHHeM BXOHBIX KOJIOBBIX CJIOB, HSIPUBOAUMBIMH MHOTOYWIEHAMU H JPYTHMH
napamMeTpamMu. BblleneHsl cilydad W3MCHEHHsS I1apaMeTPOB CHUCTEMBl KOAMPOBAHMSA, IIPU KOTOPBIX pacrpeleseHue
BEPOATHOCTH MAaCKHPOBKH HE M3MEHSETCS MM M3MECHEHHMs HE3HAuWTeIbHbl. JTH BAPUAHTBl MOTYT MCIIONB30BATHCS UL
Moau(GHUKaLMK KOHCTPYKIMH 03 CHWKEHHMS YCTOMYMBOCTH BCEH CHCTEMBI LIEIOCTHOCTH K alreOpaudecKuM arakam, 4To
MO3BOJISIET HACTPOUTH CHCTEMY IIOJ HpaKTHYeCKHe HYXKIbl. PaccMOTpeH Takoi mapameTp, Kak paclpefesiCHHEe BXOIHBIX
KOJIOBBIX CJIOB, KOTOPBIH OTPHIATENHHO BIMSET HA YCTOHIMBOCTh CHCTEMBL. VI3MEHEHHS B pacmpeereHHN BXOJHBIX KOJOBBIX
CJIOB JTOJDKHBI OTCIIKMBATBCS B CHCTEME OOECIICUEHUsI IIEOCTHOCTH, M B IIESIX O€30MacHOCTH JOJDKHBI HCIIONB30BATHCS
JIOTIOJTHUTEIbHBIE TIPe00pa30BaHus ISl BXOJHBIX KOJOBBIX CJIOB, JINOO M3MEHATHCS (QYHKINS KOOUPOBAHHS BHYTPH CHCTEMEI
IETIOCTHOCTH.

KnioueBnie cioBa

HaJIeKHOCTh, BEPOSITHOCTE MAacKupoBKH omuOku, AMD-kozxpl, cloXHOCTH (YHKIHMM KOIMPOBAHUS, HEPaBHOMEPHOE
pacrpezieneHue

Introduction

As shown in [1-3], classical methods of error detection are not effective when the error distribution of a
device is unknown or controlled by anattacker; they do not give the possibility to minimize the worst error masking
probability. The majority of currently used linear and nonlinear codes have a set of undetectable errors, and their
injection could compromise security in encoding devices. If an error configuration is controlled by an attacker, then
he can produce an error changing of a correct codeword into a wrong codeword, exceeding the correction ability of
the used code. In the case of linear codes, undetectable errors are codewords, so it is enough for the attacker to
know only the code, used in the device, for the error injection. One of the models for error injection is algebraic
manipulation. This model assumes that the attacker is able to modify the value of some abstract data storage devices
without having read-access to the data. This model can be used for memory security [4-6], and for the other
systems, such as secret sharing schemes [7]. In these cases, error configuration is absolutely unpredictable and
depends on the attacker’s capabilities and method of fault injection.

The solution for the problem of algebraic manipulation was firstly introduced by Cramer et al [7]. Algebraic
manipulation detection (AMD) codes may, in some sense, be viewed as keyless combinatorial authentication codes
that provide security in the presence of an oblivious algebraic attacker. Its original applications included robust
fuzzy extractors, secure message transmission and robust secret sharing. In recent years, however, a rather diverse
array of additional applications in cryptography has emerged.

The nonuniformity of input values opens up wide opportunities for an attacker introducing errors, when he is
able to find correlations between the error masking probability distributions for some encoding function and the
probability distributions of the inputs. This correlation more likely enables the introduction of an error in the device,
because in this case the probability of error masking is dependent on the input values. Today this question is being
studied in details. There is a mechanism to reduce the maximum of error masking probability by Gray mapping [8].
However, in the paper [8] the authors do not analyse the effect of the encoding function parameters on minimization
of the error masking probability.

This paper compares the error masking probability for several AMD codes basedon PN functions in cases of
uneven distribution of the input codewords. As a PN function, we take the so-called Maiorana — McFarland
functions defined as follows: denoting input s by (x, y) with x,y € F,k/2, we have F(x,y) = x X mt(y), where m is
a permutation on F,k/.. We consider, in particular, F; (x,y) = xy, F,(x,y) = xy~! and F3(x,y) = xy?* (with the
convention 0~1 = 0 in the second case and with k/2 odd in the latter case so that y — y3 is a permutation). The
purpose of the comparison is to identify the relationships between the probability of error masking and distribution
of input values that enable an attacker to accelerate the error finding with the high probability of errors masking.

In the analysis of the encoding functions, the following issues are discussed in details:

— the error masking probability of encoding functions with the same nonlinearity and the code redundancy;
— what is the effect of changing the irreducible polynomial chosen to build the finite field, over which the PN
function is defined.

For each probability distribution of error masking investigated, the following parameters are analyzed:

— maximums of error masking probability;
— number of the error masking probability maximums for given distributions;
— number of errors with error masking probability exceeding 0.5 (so-called "bad errors").

The studies carried out are also applicable to the class of wavelet robust codes presented in the works
[9, 10].
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Algebraic Manipulation Detection code

The model of algebraic manipulation over an abstract storage device has been firstly described by Cramer
et al. in [11] and presented in Figure 1. Such device is denoted by Y; (G) and can hold an element g from a finite
Abelian group G. An attacker is not able to obtain any information about the element g stored in the device
Y. (G). However, he can change the stored element g by adding another element e € G. This tampering is called
an algebraic manipulation. After algebraic manipulation, the abstract storage device ), (G) will store the value
g + e, we will call e an error. An adversary can choose the value e only on the basis of what he already knew
about g before it was stored in the device (his a priori knowledge of g). AMD codes are supposed to encode an
original information s € S as an element of g € G in such way that any algebraic manipulation is detected with
high probability. It is known that the best option is to choose a perfect nonlinear function [12] for this encoding
mapping. But this option is in fact optimal under the condition that the input distribution is uniform. In this
paper, we analyse the case of non-uniform input distribution of AMD codes.

Original information (input codewords).

In practice, s is nonuniform distributed
seS

A 4

Encoder of security-
oriented code

E:S—>G
L 4 gEG
In%ection 2(G)
of error » Abstract storage
e device
v gteeG

Decoder of security-
oriented code
D:G—>S

v

seS
Figure 1. Model of algebraic manipulation and protection scheme based on AMD code

In the paper [11] Cramer et al. presents two types of injection attack: weak and strong. In weak attack, the
adversary cannot choose the inputs. So, from the adversary’s point of view the source s is uniformly distributed
and the attacker only can inject any specific error pattern e in the storage device Y, (G), but he cannot change
value s at his own discretion.

In case of strong attack, the adversary can influence the outputs by choosing the inputs. In this case the
adversary knows the value s € S and, moreover, he can choose it himself. In both types of fault injection attacks
the value g stored in Y, (G) is hidden from the attacker.

Definition 1 [11]. Let m and n be two positive integers. An (m,n) AMD code is a pair of a probabilistic
encoding functions E: S — G from a set S of size m into a finite Abelian group G of order n, and a deterministic
decoding function D: G — S U {1} such that D(E(s)) = s with probability 1 for every s € S, where L denotes
combinations which are not included in the code.

An AMD code is called "systematic" if set S is a group and the encoding function E has the form

E:S - SxGy %G,

s = (s,t,F(t,s)),
for a function F, with t being randomly chosen with uniform probability in G,.

Definition 2 [11]. An AMD code is called weak e-secure, € > 0 if, for every s chosen at random from S
and for every e € G sampled from G according to some distribution independent of s and E (s), the probability
that D(E(s) +e) € {s, L} is at most e.

So in the system with an AMD code, when the decoding function gives the correct value s with
probability 1 — ¢ or the special symbol L, it means that algebraic manipulation has been detected.

Definition 3 [11]. An AMD code is called strong e-secure for € > 0 if, for every s € S sampled at random
from S and for every e € G sampled from G according to some distribution independent of E (s), the probability
that D(E(s) +e) € {s, L} isatmost €.
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Before Cramer’s work, in the works written by Mark Karpovsky et al [1, 13] the notion of robust code
was presented, which is related to deterministic weak AMD code:

Definition 4 [6]. Acode C € GF(2™) is R-robust if the size of the intersection of the code C and any of its
translates C = {g | g = g + e,g € C},e € GF(2™),e # 0 is upper bounded by R:

R = maX0¢cF(2n)|{g|g €C,g+e€C(}
where + is the componentwise addition modular two. A binary R-robust code C of length n with M = card(C)
is denoted by a triple (n, M, R) (Figure 2).

C C=C+e

R=max|CNC
e+0
Figure 2. Definition of robust code

The code (which is not necessarily linear) is supposed systematic: there exists a subset I of positions in
codewords, called an information set of C, such that every possible tuple of length |I| occurs in exactly one
codeword within the specified coordinates x;: i € I. The code equals then, up to a permutation of the codeword
coordinates: {(s, F(s)); s € S} where S is a subgroup of G, for some (non necessarily linear) function F, and the
encoding function E: S — G is then E(s) = (s, F(5)).

The probability of missing an algebraic manipulation € with such a robust code equals the so-called
probability of error masking, which is denoted @ (e) and is defined as:

Q(e) — card (Cn(e+C))

card (C)
The maximum probability of error masking max,.,Q(e) is directly related to the robustness order of

R
code max,.oQ(e) = card (€)'

Weak AMD codes must provide the detection of algebraic manipulation with security parameter & for the
set of errors (0 # e, ey, e¢), on condition that the information part contains an error e; # 0. Thus, the weak
AMD codes are not tested for the set of errors with zero information part (0 = ey, e, e). Mark Karpovsky in
[14] writes that e; # 0 is a necessary condition for successful algebraic manipulation. However, for secure
architectures, the integrity of redundant bits of codes is also important. For example, errors (es, e = 0) have a
high probability of error masking for some multilinear arithmetic codes [15]. Thus, it is necessary to perform
analysis for the whole set of errors, not just for errors in the information part. Strong AMD codes must consider
the case when the adversary injects errors, but does not alter the value s, as successful algebraic manipulation.
That is, in strong AMD codes, injection of errors in redundancy part (and also in random part) of codeword g
must be detected with probability that D(E(s) + e) € {L} bounded above by &. Examples of strong AMD codes
are given in [16] Section 3 and [11] Section 6.

In this section, the main definitions of the AMD code theory are presented. The main characteristics of
these structures are outlined.

Robustness and max Q(e) for perfect nonlinear functions

In the late 1980s the importance of highly nonlinear functions in cryptography was first discovered by
Meier and Staffelbach from the point of view of correlation attacks on stream ciphers, and later by Nyberg in the
early 1990s after the introduction of the differential cryptanalysis method. Perfect nonlinear (PN) and almost
perfect nonlinear (APN) functions, which have the optimal properties for offering resistance against differential
cryptanalysis, have since then been an object of intensive study by many mathematicians.

Perfect nonlinear functions play an important role in robust codes or deterministic weak algebraic
manipulation detection codes also. The best possible codes which have maximum possible number of codewords
for a given length and robustness are optimum robust codes which have perfect nonlinear encoding function.

Proposition. Let C = {(x, F(x)),x € F¥}, where F is a vectorial function from FX to F%, with k and r
non-negative. Then C is optimum robust if and only if F is perfect nonlinear.

In the case of weak model of algebraic manipulation, the robustness R and the error masking probability
Q(e) are defined by the encoding function F. In particular, under uniform distribution of input codeword, the
error masking probability of a code based on a PN function Q(e) is bounded above by 1/27. Indeed, denoting
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e = (a, b), we have

card (C N (e + C)) = card ({(x, y) € (F5)%; {’Iﬁ ;)y :; )+ b}).

For every a # 0, this size equals 2¥~" by the definition of PN functions, and for a = 0,b # 0 it is null.
Since C has size 2%, this gives max,.,Q(e) = %ngc» = 2’2{—,: =27,

Example 1. Let us consider the distribution of error masking probability of the systematic code with
codewords (x,y, xy), x,y € F,r based on the PN function F(x,y) = xy withr = 2.

The error vector is e = (ey, ey, er) # (0,0,0), and we have Cn(e+C) ={(xy,xy);(x +e)(y +
ey) = xy +ep} = {(x,y,xy); eyx + e,y = eye, + eg}, and the error masking probability equals to 272 if
(ex,ey) # (0,0), whatever is e, and 0 if (ey, e,) = (0,0) since then we have er # 0. Triples (ey, e, er) are
represented by the decimal numbers whose binary expansions are equal to these triples.

There are three errors {e, = 0,e,, = 0,e; # 0} that are always detected by above described code (Q(e) =
0). Indeed, these errors are: e, = 00,e,, = 00,e = 01; e, = 00,e, = 00,er = 10;e, = 00,e, = 00,ep = 11.

This section shows the relationship between the nonlinearity of the coding function and the reliability of
the code. Also the part explains why, for uniform distribution, the max Q(e) is bounded above by 1/27.

PN functions under different nonuniform distribution of input codewords

Robust codes do not provide protection against the strong model of algebraic manipulation. If there is a
dependence between the data entered in the device and the manipulation, such that the distortion takes the value
of the difference between a current codeword and any other one, then this distortion cannot be detected with a
high probability.

Example 2. Let the distribution of the input codewords be nonuniform. Assume, there is a function ¢(s)
that determines the probability of occurrence of a given information message s € S at the input of abstract
storage device Y, (G) described above. Then, the error masking probability under nonuniform distribution of the
outputs for given code C equals Q(e) = X +cec $(s) [8], where g is the codeword corresponding to input
information s (we have g € C by construction). For simplicity of reading, all binary vectors will be represented
as integers. For instance, the distribution of error masking probability of optimum robust code (x,y,xy),x,y €
0.25,for s € [8; 9]
0.15, for s € [7;10]
0.05, for s € [6; 11]

0.01, otherwise
still equal to 2, s is a vector of length 4), where | denotes concatenation, and integers in brackets denote integer
representation of binary word s. For instance, the entry 0.25, for s € [8; 9] means that the probability that s =
(1,0,0,0) (resp. s = (1,0,0,1)) equals to 0.25.

0.6

o T O A
mll Nl

oz | W \
o1 !

0

F,2 under nonuniform distribution ¢(s) = is shown in Figure 3, s = (x]y) (since r is

M
[

1 11 21 31 41 51 61
Figure 3. Distribution of error masking probability for code (x,y, xy), x,y € F,2 under nonuniform distribution.
Ordinate is error masking probability for each possible error. Abscissa is decimal representation of error vectors

The set of errors {e, = 0,e, = 0,er # 0} that are always detected (i.e. such that Q(e) = 0) by code is
unchanged. The maximum of error masking probability drastically increases from 0.25 to 0.52, and we know
that injection of errors with the high masking probability are dangerous for protected device. Moreover, optimum
robust code under nonuniform distribution of input codeword already does not provide equal probabilities of
detection for all possible errors.

To protect against strong algebraic manipulation, it is necessary to get rid of deterministic encoding
procedures [15, 5]. For deterministic encoding functions, there is one correspondence between the input values s
and codeword g = (s, F(s)). Therefore, the probability of occurrence of input values has a direct impact on the
codewords. That is, if the probability of occurrence of the input value p(s,) equals to 0.8, then the probability of
a corresponding codeword p(g,) is also equal to 0.8. So, deterministic encoding functions do not prevent the
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analysis of code for searching a high probability of error masking.

For providing randomness, the encoding process can be performed with the help of a random variable x that
is independent of the input data s. For such stochastic encoding, each input value s corresponds to the set of
codewords g = {(s,tq, F(t4,5)),..., (s, t;, F(t;,s))}, where i depends on the length of the random part t. Thus,
even for the same input values, the output may be different. One input value corresponds to a few codewords; each
one has its own set of errors with high probability masking. Indeed, to calculate the probability of error masking
Q(e) for all e, we need to count all sum g + e for all errors e and for all codewords g. Thus, the maximum value
of Q(e) corresponds to several codewords g’ such that {(C N (e + C)),e + C ={e + g, g’ € C}} is performed.
For a deterministic function, attacker can select one of these codewords g, and find the corresponding input
value s’. Inputting the value s’ and the simultaneous introduction of error e can compromise the encoding
device. In the stochastic coding, input of values s’ does not guarantee that we will get the required codeword g'.

Let us consider the codes C; = {(s,F(s)),s € F&} and C, = {(s,t,F(t,s)),s € FX,t €x FT*} (with
F(s) € F}, F(t,s) € FF}), under some nonuniform distribution ¢(s). For deterministic version C;, the probability
of codeword occurrence of g equals to ¢p(s). For stochastic version C,, the probability of codeword occurrence
of g equals to ¢p(s)2™. For analysing all possible combinations, the attacker can either control the random
number generator (RNG) in the encoding device or have the ability to send the input s to the device until all
combinations have been received. Thus, the attacker is able to compute a set of possible codewords (s, t), but
not the encoded version of input s.

The computational complexity of the probabilistic encoding function for AMD codes depends on both the
complexity of obtaining the random part t and the complexity of encoding function F(t,s). In cryptographic
applications and devices, the random part x can be generated by a RNG, that is already used in most of the
modern cryptographic devices. In any case the probabilistic AMD codes have higher computational complexity
than the robust codes (deterministic AMD codes). If there are problems with the generation of random values or
if the computation power is not sufficient, it is preferable to use robust codes. But robust codes are poorly
investigated in the case of nonuniformly distributed input s. This paper investigates the behavior of PN functions
under non-uniform input different distribution.

The paper compares the following power PN functions:

1. F(x,y) =xyand F(x,y) = xy~! where x,y € F,r (for r = 2,3,4,5);
2. F(x,y) =xy3and F(x,y) = xy~3 where x,y € F,r (for r = 3,5).

For given values r, max Q(e) is measured for all possible irreducible polynomials. Used polynomial is

given in description of table with corresponding measurements.

Comparison of PN functions for r=2

We compared the functions already discussed earlier: xy and xy~1, where x,y € F,r are two parts of
information of equal length r. These two functions have the same value of robustness and the maximum of error
masking probability. Indeed, both encoding functions are perfect nonlinear functions, hence max,.,Q(e) =
1/2". Comparison of the functions F(x,y) = xy and F(x,y) = xy~! for various distributions and value r = 2
is shown in Table 1.

Distribution xy xy~ !
Uniform distribution 0.25 0.25
Bernouilli distribution 0.5598 0.5598
_ (0.1, for g € [4;9]
$:(9) = { 0.04, otherwise 0.4 0.4
0.25, for g € [8;9]
_)0.15, for g € [7;10]
®2(9) =)005,  forg e [6:11] 0.52 0.52
0.01, otherwise

Table 1. Comparison of the error masking probability for the functions F(x,y) = xy and F(x,y) = xy !
for value r = 2 over irreducible polynomial x? + x + 1. g denotes the codeword of code
and ¢(g) probability of codeword occurrence

In the case of a uniform distribution, the probability of codeword occurrence is the same for every input,

or, in other words, ¢(g) = $¢(9g2) =...= d(g,2r).

Bernouilli distribution of parameter p € [0; 1] that is:

d(g) = [T, p2i(1 — p)* 9.

There is no difference between codes based on these functions. For » = 2 most codewords in both codes
coincide. These two codes are different in 6 codewords.

The difference between codes will be more explicit if we explore the functions for higher value of r, for
example 4 and 5, but then a huge number of comparisons is needed for each codes (for example, for r = 4, the
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number of codewords is 28, the error space is 212).

Comparing the behavior of PN functions for r=3 under two irreducible polynomials

For comparison, the following PN functions have been chosen: F(x,y) = xy, F(x,y) = xy~ 1, F(x,y) =
xy3, F(x,y) = xy~3, where x,y € F,r are information parts of length equal to r (supposed odd in the case of
the two last functions so that y — y3 is bijective that is a necessary and sufficient condition for F(x,y) = xy3
and F(x,y) = xy~3 to be PN). We checked that for other choices of irreducible polynomials the maximum of
error masking probability has not changed essentially. If we compare the max Q (e) over irreducible polynomial
x3+x%+ 1 and x3 + x + 1it is seen that the differences are small. Table 2 presents the values for the same
functions but for irreducible polynomial x3 + x% + 1 (probability distributions of error masking Q(e) are
different, but the maximum value of Q (e) remains unchanged in most cases).

Distribution ¢(s),s = (x,y) Xy xy ! = xy® xy3 xy 3
Uniform distribution 0.0125 0.0125 0.0125 0.0125
Bernouilli distribution 0.5197 0.4631 0.4947 0.4189
_ (0.84, for g € [31;34]
$1(9) = { 0260, otherwise 0.42 0.6166 0.6166 0.42
_ (0.730, for g € [16;45]
d,(g9) = { 0.334, otherwise 0.1866 0.1721 0.1721 0.1866
_(0.144, forg € [1;44]
d3(g9) = { 0.920, otherwise 0.36 0.2745 0.2745 0.36
0.115, for g € [1;15]
0415, for g € [16;30] 0.2133 0.1824 0.1824 0.2133

®4(9) =) 0215, Forg € [31; 45]
0.319, otherwise

Table 2. Comparison of maximum error masking probability for the functions F(x,y) = xy, F(x,y) = xy™1,
F(x,y) = xy® and F(x,y) = xy~3 for value r = 3 over irreducible polynomial x> + x + 1

Measurements of the masking probability over irreducible polynomial x3 + x2 + 1 for distributions
d1(9), d2(g9), d3(g), d4(g) yield results that coincide with a deviation of 0.05 with results in Table 2.

For r = 3, xy~! = xy® is linearly equivalent to xy3. It is interesting to see that with some distributions,
two equivalent PN functions give the same error masking probability and with the others it can give different
ones. However, polynomials x3 + x + 1 and x3 + x2 + 1 are reciprocal of each other and they are the only
primitive polynomials for r = 3.

For most distributions, the maximum values of the function F(x,y) = xy~! and F(x,y) = xy? are close
to each other (disributions ¢,(g), d3(g9), $.(g)). If we look at the distribution of Q(e) for function F(x,y) =
xy~t and F(x,y) = xy® (Figure 4), we can see that distribution does not coincide fully. However, as shown in
Figure 4, we can select error classes with the same values of error masking probability for both functions.

0.84, for g € [31; 34]
0.260, otherwise
masking probability has a high value for function F(x,y) = xy~! (Figure 5). In comparison with the other
encoding functions, max,..,Q (e) for function F(x,y) = xy~! under distribution ¢, is very high, therefore using

of this function under distribution ¢ is undesirable.

The nonuniform distributions of input codeword can lead to jumps in the probability distribution of the
error masking Q(e). Figure 6 represents the case of correlation between the input distribution and injected error
that give rise in error masking probability distribution. For example, we can see an error with a decimal
representation 84 in Figure 6 or, in other words, the error with maximal Q(e) for the distribution of ¢5(g) and
an irreducible polynomial 100101.

Behavior of the error masking probability for encoding functions F(x,y) = xy and F(x,y) = xy~3 is
also largely the same. As shown in Table 2 for these functions the maximums of error masking probability for all
distributions except the Bernouilli coincide. Distribution of Q(e) are different, but as in the case of functions
F(x,y) = xy~land F(x,y) = xy3, there are set of errors with the same Q(e).

However, for distribution of input codewords ¢,(g) = { , the maximum of error
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Figure 4. Distribution of error masking probability for encoding functions F(x,y) = xy modulo x3 + x + 1
(top graphic) and F(x,y) = xy modulo x® + x2? + 1 (lower graphic) under Bernoilli distribution. Ordinate is error
masking probability for each possible error. Abscissa is decimal representation of error vectors
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Figure 5. Distribution of error masking probability for encoding functions F(x,y) = xy~! (top graphic) and
F(x,y) = xy? (lower graphic) under distribution ¢5(g). Ordinate is error masking probability for each possible
error. Abscissa is decimal representation of error vectors
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Figure 6. Distribution of error masking probability for encoding function F(x,y) = xy~* under nonuniform
distribution ¢4(g). Ordinate is an error masking probability for each possible error. Abscissa is a decimal
representation of error vectors
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Comparison of PN functions for r=4 over two irreducible polynomials

Comparison of the functions F(x,y) = xy and F(x,y) = xy~! for various distribution and value r = 4
is shown in Table 3.

Distribution xy xy !
Uniform distribution 0.0625 0.0625
Bernoilli distribution 0.4987 0.2227
_ (0.856, for g € [51;106]
¢1(9) = { 0.2200, otherwise 0.2285 0.1222
(07100,  for g € [101;200]
b2(9) = { 0.3156, otherwise 0.112 0.0917
_ (0.1150, for g € [1;150]
bs3(9) = { 0.9106, otherwise 0.1358 0.1045
(0930, for g € [101;130]
¢4(9) = { 0.1226, otherwise 0.48 0.1844

Table 3. Comparison of the error masking probability for the functions F(x,y) = xy and F(x,y) = xy~! for value
r = 4 over irreducible polynomial x* + x3 + 1. g denotes the codeword of code and ¢(g) probability of codeword
occurrence

From Table 3 we can see that function F(x,y) = xy has a lower error masking probability for all
distributions.

Comparison of PN functions for r=5 over six irreducible polynomials
We have chosen one function with » = 5 and tried all primitive polynomials in Table 4.

Distribution b (s), s = (x,y) 100101 | 101001 111101 101111 110111
1
¢1(g)={m'WH(S)= 5 0.05952 | 0.05952 | 0.051587 | 0.05556 | 0.05556
0, otherwise
_(1/120,wy(s) = 3
¢2(g)—{0’ e 0.08333 | 0.08333 | 0.08333 | 008333 | 0.08333

Bernouilli distribution 0.4880 0.4880 0.4880 0.4880 0.4880
0824, € [501; 525] 0.43713 0.43713 0.43713 0.43713 0.43713

¢4(9) = {0.21000, otherwise
0.6424, g € [301;725]

bs(9) = {0.4600, otherwise
Table 4. Comparison of maximum error masking probability for the functions F(x,y) = xy for value r = 5 over all

irreducible polynomial in GF(2°%). Number of vector with hamming weight 5 in GF (2°) equal to 252. s = (x,y) is
information part of codeword g = (s, F(s)). The denotion wy(s) means the Hamming weight of vector s

0.04528 0.04528 0.04528 0.04528 0.04528

Distribution ¢(s),s = (x,y) 100101 101001 111101 101111 110111 111011
_ {1/252, wy(s) =5 0.06746| 0.06746 0.05952 0.05556 0.05952 | 0.05952
$1(9) = 0, otherwise
_ {1/120, wy(s)= 3 0.09167| 0.09167 0.08333 0.08333 0.08333 |0.08333
b2(9) = 0, otherwise

Bernouilli distribution - - - _ _ _

ba(9) ={ 0.824,g € [501;525] 0.17207| 0.17207 0.17207 0.20520 0.17207 |0.17207
«g 0.21000, otherwise

s )={0.6424,g € [301;725] [0.03630| 0.17207 0.03630 0.03630 0.03630 |0.03630
s\9 0.4600, otherwise

Table 5. Comparison of maximum error masking probability for the functions F(x,y) = xy~! for value r = 5 over
all irreducible polynomial in GF (25). Number of vector with hamming weight 5 in GF(2!°) equal to 252. s = (x,y)
is information part of codeword g = (s, F(s)). The denotion wy(s) means the Hamming weight of vector s

In the first line of Table 4, the irreducible polynomial of GF(2%)is presented. Polynomials are
represented via binary coefficients, that is, for example, the 100101 denotes the polynomial x° + x2 + 1. The
first column contains the distribution of input distributions ¢(g). We made a simulation with a distribution
uniform over some strict subset of (FZ) and null outside, for instance the set of those (x, y) of Hamming weight
r = 5. A number of binary sequences with the length of 10 bits and hamming weight of 5 equals to 252. So,
probability of occurrence for vector s with weight 5 equals to 1/252. Each column presents the irreducible
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polynomial and corresponding maximum value of error masking probability for each distribution of input

codeword.

For distribution ¢,(g) we get the different values of max Q(e), however, for another distribution
maximum of error masking it does not depend on irreducible polynomial.
Based on the measurement results carried out in this section for codes constructed with the Maorana —

McFarland functions, the following conclusions can be drawn:

— Tables 4 and 5 show how the changing of an irreducible polynomial that is used to construct codewords
effects on the probability of error masking. From the tables we see that for the same distribution of input
codewords, the using of reciprocal irreducible polynomials gives an equal maximum value of the error
masking probability. Nonreciprocal irreducible polynomials give the masking probability maximum that is
different from the other irreducible polynomials for same input codeword distribution (Values max Q(e)
differ by at most 0.01).

— the set of input codeword distribution, codespace and irreducible polynomial can give jumps in the
probability distribution of the error masking Q(e).The examples of jumps can be seen in Figure 6 for error
with a decimal representation 84.

— the probability distribution of the error masking given by equivalent codes coincide up to permutations
(Figures 4 and 5).

— max Q(e) for equivalent codespaces are equal for identical irreducible polynomials, for example, the
functions xy~* and xy® or xy and xy~3 in Tables 2 and 3.

Conclusion

AMD codes based on PN functions are considered as the object of research. AMD codes present a new
method of ensuring integrity for structural elements of device for processing, storing and transferring
information, such as cache memory, RAM, logic and arithmetic elements in circuits. In this work AMD codes
based on PN functions were tested for stability, made an overview of changes in the input codeword distribution,
irreducible polynomials used to generate code spaces. As a result, cases were identified when it is possible to
reduce the stability of code constructions. Such cases are possible if the coding function, the input codeword
distribution or irreducible polynomial is changing. These cases should be taken into account when methods of

integrity ensuring based on the considered code constructions are designed.
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