УДК 535.015 ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ОПТИЧЕСКИХ ПАРАМЕТРОВ ДВУЛУЧЕПРЕЛОМЛЯЮЩЕГО ОПТИЧЕСКОГО ВОЛОКНА С ОЛОВЯННЫМ ПОКРЫТИЕМ ОТ ДИАМЕТРА НАМОТКИ

В.С. Лавров^а, А.В. Куликов^а, А.Б. Мухтубаев^а

^а Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация Адрес для переписки: vladimir8812@mail.ru

Адрес для переписки: viadimir8812@mail.ru

Информация о статье

Поступила в редакцию 29.07.17, принята к печати 19.10.17 doi: 10.17586/2226-1494-2017-17-6-1167-1170 Язык статьи – русский

Ссылка для цитирования: Лавров В.С., Куликов А.В., Мухтубаев А.Б. Экспериментальное исследование зависимости оптических параметров двулучепреломляющего оптического волокна с оловянным покрытием от диаметра намотки // Научно-технический вестник информационных технологий, механики и оптики. 2017. Т. 17. № 6. С. 1167–1170. doi: 10.17586/2226-1494-2017-17-6-1167-1170

Аннотация

Представлены экспериментально полученные зависимости оптических потерь и *h*-параметра двулучепреломляющего оптического волокна с оловянным покрытием от диаметра намотки. Оптические потери измерялись методом вносимых потерь, *h*-параметр измерялся методом скрещенных поляризаторов. Диаметр намотки менялся от 5 до 35 мм. Определен минимальный допустимый диаметр намотки исследуемого волокна для использования его в опорном плече интерферометрического датчика – 30 мм, при этом оптические потери равны 0,07 дБ на 1 м, *h*-параметр равен 50×10^{-4} .

Ключевые слова

двулучепреломляющее оптическое волокно, *h*-параметр, оптические потери от диаметра намотки, оловянное покрытие

Благодарности

Работа выполнена в Университете ИТМО при финансовой поддержке Министерства образования и науки Российской Федерации (Уникальный идентификатор проекта: RFMEFI57815X0109, Соглашение № 14.578.21.0109).

EXPERIMENTAL INVESTIGATION OF WINDING DIAMETER EFFECT ON OPTICAL PROPERTIES OF HI-BI FIBER WITH TIN COATING V.S. Lavrov^a, A.V. Kulikov^a, A.B. Mukhtubayev^a

^a ITMO University, Saint Petersburg, 197101, Russian Federation

Corresponding author: vladimir8812@mail.ru

Article info

Received 29.07.17, accepted 19.10.17 doi: 10.17586/2226-1494-2017-17-6-1167-1170

Article in Russian

For citation: Lavrov V.S., Kulikov A.V., Mukhtubayev A.B. Experimental investigation of winding diameter effect on optical properties of Hi-Bi fiber with tin coating. *Scientific and Technical Journal of Information Technologies, Mechanics and Optics*, 2017, vol. 17, no. 6, pp. 1167–1170 (in Russian). doi: 10.17586/2226-1494-2017-17-6-1167-1170

Abstract

The paper presents experimentally obtained dependences of optical losses and *h*-parameter of the birefringent optical fiber with tin coating on a winding diameter. The optical losses were measured by insertion loss method, and *h*-parameter was measured by orthogonal polarizer method. The winding diameter varied from 5 mm to 35 mm. A minimal acceptable winding diameter of 30 mm was determined for this fiber used as a reference arm in interferometric sensor wherein optical losses are equal to 0.07 dB/m, and *h*-parameter is equal to 50×10^{-4} .

Keywords

birefringent optical fiber, h-parameter, bend losses, winding, tin coating

Acknowlegements

This work was performed in ITMO University and was supported by the Ministry of Education and Science of the Russian Federation (the unique identifier of the project: RFMEFI57815X0109, Contract No.14.578.21.0109).

В настоящее время с помощью средств волоконной оптики возможно построение сенсорных систем различных физических величин [1, 2]. Одно из активно развивающихся направлений – создание волоконно-оптических гидроакустических датчиков ВОГД [3]. Одно из направлений – ВОГД на низкие акустические частоты менее 500 Гц, которые могут быть использованы в морских буксируемых и донных сейсмических косах для поиска углеводородов на морском шельфе [4, 5]. Такие ВОГД, как правило, являются интерферометрическими, так как именно такой способ регистрации акустических сигналов позволяет добиться требуемых акустических параметров [6].

Для работы ВОГД интерферометрического типа необходимо обеспечить одинаковое состояние поляризации у двух интерферирующих лучей. Один из способов достижения этого – использование двулучепреломляющих оптических волокон (ДЛП ОВ) [7].

В настоящей работе рассмотрено двулучепреломляющее оптическое волокно с оловянным покрытием. За счет покрытия оловом у него снижена акустическая чувствительность, и оно может быть использовано в качестве опорного плеча для малошумящего интерферометрического датчика [8].

К буксируемым сейсмическим косам предъявляются жесткие требования по внешнему диаметру, а следовательно, опорное плечо интерферометрического датчика должно быть намотано на оправку малого диаметра (менее 40 мм). Из-за малого диаметра намотки в ДЛП ОВ ухудшаются оптические параметры – оптические потери и *h*-параметр.

В работе [9] были исследованы зависимости оптических параметров ДЛП ОВ ESC-4. Исследуемое в настоящей работе ДЛП ОВ кварцевой частью повторяет волокно ESC-4, но имеет покрытие, отличающееся механическими и геометрическими параметрами.

Цель настоящей работы – исследовать зависимость оптических потерь и *h*-параметра от диаметра намотки ДЛП ОВ с оловянным покрытием и определить минимальный диаметр намотки ДЛП ОВ для использования его в качестве опорного плеча интерферометрического датчика. В качестве исследуемого образца было выбрано ДПЛ ОВ с эллиптической напрягающей оболочкой и оловянным покрытием. На рис. 1 представлена фотография торца кварцевой части исследуемого ДЛП ОВ. В таблице приведены параметры ДЛП ОВ с оловянным покрытием и параметры ДЛП ОВ с акрилатным покрытием.

Рис. 1. Фотография торца кварцевой части исследуемого оптического волокна

Оптические потери	не более 2 дБ/км (1,55 мкм)	не более 0,5 дБ/км (1,55 мкм)
<i>h</i> -параметр	не более 1×10 ⁻⁴ 1/м	не более 6×10 ⁻⁶ 1/м
Концентрация GeO ₂	4 мол.%	4 мол.%
Диаметр модового	7,64 мкм	7,64 мкм
поля		
Длина биений	2,25 мм	2,25 мм
Покрытие	Оловянное	Акрилатное
	10–15 мкм	62,5 мкм
Диаметр кварцевой	125 мкм (±1 мкм)	125 мкм (±1 мкм)
части		

Таблица. Параметры оптических волокон

Исследование зависимости оптических потерь ДЛП ОВ ESC-4 с оловянным покрытием проводилось с помощью метода вносимых потерь и проходило следующим образом. К исследуемому образцу с одной стороны был подсоединен источник оптического излучения ($\lambda = 1550$ нм), а с другой – фотоприемное устройство (ФПУ), при этом было записано значение оптической мощности P_n , приходящее на ФПУ в отсутствии воздействия, т.е. намотки. Далее исследуемый образец был намотан на различные диаметры специальной оснастки, и для каждого диаметра и длины намотанного волокна записывалась приходящая на ФПУ оптическая мощность *P*_{н.} Итоговые потери для каждого диаметра оснастки вычислялись по формуле (1):

$$\alpha = 10 \log \left(\frac{P_{\rm I} - P_{\rm H}}{L_{\rm H}}\right),\tag{1}$$

где α – оптические потери дБ/м; $P_{\rm n}$ – оптическая мощность на фотоприемном устройстве в отсутствии воздействия, а $P_{\rm n}$ – при намотке; $L_{\rm n}$ – длина намотанного оптического волокна.

Полученная зависимость оптических потерь от диаметра намотки представлена на рис. 2 для ДЛП OB ESC-4 с оловянным покрытием, для сравнения приведена зависимость для ДЛП OB ESC-4 с акрилатным покрытием.

Рис. 2. Зависимость оптических потерь от диаметра намотки

Исследование зависимости *h*-параметра исследуемого волокна проводилось в скрещенных поляризаторах и проходило следующим образом.

Линейно поляризованное оптическое излучение ($\lambda = 1550$ нм) заводилось в оптическую ось ДЛП OB. На выходном конце исследуемого образца установлен поляризатор. Вращая ось поляризатора, находили значения максимума $P_{\rm H0}$ и минимума $P_{\rm H90}$ оптической мощности, при этом максимум соответствовал разнице углов между оптическими осями поляризатора и ДЛП OB $\Delta \theta = 0^{\circ}$, а минимум соответствовал $\Delta \theta = 90^{\circ}$. Для компенсации *h*-параметра ненамотанного ДЛП OB были измерены P_{90} и P_0 – минимальное и максимальное значение мощности без воздействия на волокно, т.е. без намотки. Для определения *h*-параметра использовалась формула (2).

$$h = \left(\frac{P_{\rm H90} - P_{\rm T}}{P_{\rm H0} + P_{\rm H90} - 2P_{\rm T}} - \frac{P_{\rm 90} - P_{\rm T}}{P_{\rm 0} + P_{\rm 90} - 2P_{\rm T}}\right) \frac{1}{L_{\rm H}},\tag{2}$$

где P_{90} и P_0 – оптическая мощность на ФПУ при $\Delta \theta = 90^\circ$ и $\Delta \theta = 0^\circ$ соответственно, на исследуемый образец воздействия не оказывалось; P_{H90} и P_{H0} – оптическая мощность на ФПУ при $\Delta \theta = 90^\circ$ и $\Delta \theta = 0^\circ$ соответственно, исследуемый образец был намотан на оснастку; P_{T} – оптическая мощность на ФПУ, обусловленная темновым током; L_{H} – длина намотанного оптического волокна.

Полученная зависимость *h*-параметра от диаметра намотки представлена на рис. 3 для ДЛП ОВ ESC-4 с оловянным покрытием, для сравнения приведена зависимость для ДЛП ОВ ESC-4 с акрилатным покрытием.

Рис. 3. Зависимость *h*-параметра от диаметра намотки

На приведенных зависимостях (рис. 2 и 3) видно, что при диаметрах намотки ДЛП ОВ ESC-4 с оловянным покрытием меньше 30 мм исследуемые оптические характеристики резко ухудшаются, и, соответственно, оптическое волокно, намотанное на меньшие диаметры, уже не может использоваться в качестве опорного плеча компенсационного интерферометра. На диаметрах намотки больше 30 мм дополнительные потери и ухудшение *h*-параметра из-за намотки незначительно.

Таким образом, были исследованы зависимости оптических потерь и *h*-параметра ДЛП OB с оловянным покрытием от диаметра намотки. Определен минимальный диаметр намотки исследуемого волокна при использовании его в качестве опорного плеча интерферометрического датчика, и он составляет 30 мм, при этом дополнительные потери составляют 0,07 дБ на 1 м, *h*-параметр равен 50×10^{-4} .

Литература

References

- 1. Окоси Т., Окамото К. Волоконно-оптические датчики. Л.: Энергоатомиздат, 1990. 256 с.
- Удд Э. Волоконно-оптические датчики. Вводный курс для инженеров и научных работников. М.: Техносфера, 2008. 520 с.
- Teixeira J.G.V., Leite I.T., Silva S., Frazao O. Advanced fiberoptic acoustic sensors // Photonic Sensors. 2014. V. 4. N 3. P. 198–208. doi: 10.1007/s13320-014-0148-5
- Cranch G.A., Nash P.J., Kirkendall C.K. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications // IEEE Sensors Journal. 2003. V. 3. N 1. P. 19–30. doi: 10.1109/JSEN.2003.810102
- Meng Z., Hu Y., Ni M. et al. Development of a 32-element fibre optic hydrophone system // Proceedings of SPIE. 2004. V. 5589. P. 114–119. doi: 10.1117/12.577842
- Бутусов М.М., Галкин С.Л., Оробинский С.П. Волоконная оптика и приборостроение. Л.: Машиностроение, 1987. 328 с.
- Lavrov V.S., Plotnikov M.Y., Aksarin S.M. et al. Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings // Optical Fiber Technology. 2017. V. 34. P. 47–51. doi: 10.1016/j.yofte.2017.01.003
- Гукович А.В., Плотников М.Ю. Экспериментальное исследование методов снижения чувствительности опорных плеч в волоконно-оптических интерферометрических датчиках // Сб. тезисов докладов конгресса молодых ученых [Электронный ресурс]. СПб.: Университет ИТМО, 2017. URL: http://openbooks.ifmo.ru/ru/file/5485/5485.pdf (дата обращения: 25.10.2017)
- Аксарин С.М., Архипов С.В., Варжель С.В., Куликов А.В., Стригалев В.Е. Исследование зависимости параметров анизотропных одномодовых волоконных световодов от диаметра намотки // Научно-технический вестник информационных технологий, механики и оптики. 2013. № 6 (88). С. 22–26.

Авторы

Лавров Владимир Сергеевич – инженер-исследователь, аспирант, Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация, vladimir8812@mail.ru

Куликов Андрей Владимирович – кандидат технических наук, доцент, заведующий лабораторией, Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация, a.kulikov86@gmail.com

Мухтубаев Азамат Булатович – инженер-исследователь, аспирант, Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация, mukhtubaev.ab@gmail.com

- Okosi T., Okamoto K., Otsu M., Nisihara H., Kuma K., Hatate K. *Fiber-Optic Sensors*. Leningrad, Energoatomidat Publ., 1990, 256 p. (in Russian)
- Fiber Optic Sensors: An Introduction for Engineers and Scientists. Ed. E. Udd. NY, John Wiley & Sons, 2011, 512 p. doi: 10.1002/9781118014103
- Teixeira J.G.V., Leite I.T., Silva S., Frazao O. Advanced fiber-optic acoustic sensors. *Photonic Sensors*, 2014, vol. 4, no. 3, pp. 198–208. doi: 10.1007/s13320-014-0148-5
- Cranch G.A., Nash P.J., Kirkendall C.K. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications. *IEEE Sensors Journal*, 2003, vol. 3, no. 1, pp. 19–30. doi: 10.1109/JSEN.2003.810102
- Meng Z., Hu Y., Ni M. et al. Development of a 32-element fibre optic hydrophone system. *Proceedings of SPIE*, 2004, vol. 5589, pp. 114–119. doi: 10.1117/12.577842
- Butusov M.M., Galkin S.L., Orobinskii S.P. Fiber Optics and Instrument Making. Leningrad, Mashinostroenie Publ., 1987, 328 p.
- Lavrov V.S., Plotnikov M.Y., Aksarin S.M. et al. Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings. *Optical Fiber Technology*, 2017, vol. 34, pp. 47–51. doi: 10.1016/j.yofte.2017.01.003
- Gukovich A.V., Plotnikov M.Yu. Experimental study of methods for sensitivity reducing in support arms of fiber-optic interferometric sensors. *Proc. Congress of Young Scientists*. St. Petersburg, ITMO University Publ., 2017. Available at: http://openbooks.ifmo.ru/ru/file/5485/5485.pdf (accessed: 25.10.2017).
- Aksarin S.M., Arkhipov S.V., Varzhel' S.V., Kulikov A.V., Strigalev V.E. Dependence investigation of the anisotropic single-mode fiber parameters on a winding diameter. *Scientific* and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 6, pp. 22–26. (In Russian)

Authors

Vladimir S. Lavrov – research engineer, postgraduate, ITMO University, Saint Petersburg, 197101, Russian Federation, vladimir8812@mail.ru

Andrey V. Kulikov – PhD, Associate Professor, Head of laboratory, ITMO University, Saint Petersburg, 197101, Russian Federation, a.kulikov86@gmail.com

Azamat B. Mukhtubayev – research engineer, postgraduate, ITMO University, Saint Petersburg, 197101, Russian Federation, mukhtubaev.ab@gmail.com