HAYYHO-TEXHUYECKMI BECTHUK MHOOPMALIMOHHBIX TEXHOOM I, MEXAHUKI 1 OMTUKN

) mavi-uioHb 2023 Tom 23 N2 3 http://ntvifmo.ru/ hAvuHO-TEXHMuECKMM BECTHMK
IIITMO SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS “Hm“pMA““““HMX IEXH“I“"““' MEXAH“K“ “ m"“m
May-June 2023 Vol. 23 No 3 http://ntv.ifmo.ru/en/
ISSN 2226-1494 (print) ISSN 2500-0373 (online)

doi: 10.17586/2226-1494-2023-23-3-538-546

A novel approach to feature collection for anomaly detection in Kubernetes
environment and agent for metrics collection from Kubernetes nodes
Ghadeer Darwesh!, Jaafar Hammoud?2, Alisa A. Vorobeva3™?

L.2.3 ITMO University, Saint Petersburg, 197101, Russian Federation

! shadeerdarwesh32@gmail.com, https://orcid.org/0000-0003-1116-9410
2 hammoudgj@gmail.com, https://orcid.org/0000-0002-2033-0838
3 alice_ w@mail.ru™J, https://orcid.org/0000-0001-6691-6167

Abstract

Kubernetes is a widely adopted open-source platform for managing containerized workloads and deploying applications
in a microservices architecture. Despite its popularity, Kubernetes has faced numerous security challenges; deployments
using Kubernetes are vulnerable to security risks. The current solutions for detecting anomalous behavior within a
Kubernetes cluster lack real-time detection capabilities allowing hackers to exploit vulnerabilities and cause damage
to production assets. This study aims to address these security concerns by proposing a new approach and novel agent
to feature collection for anomaly detection in Kubernetes environment. It is proposed to use metrics (related to disk
usage, CPU and network) collected by node exporter (Prometeus) directly from Kubernetes nodes. The simulation was
conducted in a real-world production Kubernetes environment hosted on the Microsoft Azure, with results indicating the
agent success in collecting 24 security metrics in a short amount of time. These metrics can be used to create a labeled
time-series dataset of anomalies produced by microservices, enabling real-time detection of attacks based on the behavior
of compromised nodes within the Kubernetes cluster. The proposed approach and developed agent for monitoring can
be used to generate datasets for training anomaly detection models in the Kubernetes environment, based on artificial
intelligence technologies, in real-time mode. The obtained results will be useful for researchers and specialists in the
field of Kubernetes cybersecurity.

Keywords
Kubernetes, security, Kubernetes monitoring, attack detection, anomalies detection

For citation: Darwesh G., Hammoud J., Vorobeva A.A. A novel approach to feature collection for anomaly
detection in Kubernetes environment and agent for metrics collection from Kubernetes nodes. Scientific and
Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 3, pp. 538-546. doi:
10.17586/2226-1494-2023-23-3-538-546

YK 004.056
HoBblii cioco6 cOopa JaHHBIX ISl 00HAPYKEHUSI AHOMAJIBHOTO MOBEIeHUS
B cpene Kubernetes u areHT 1,11 c6opa MeTpHK € y3J10B
Tagup dapeum!, Kaapap Xammyn2, Aanca Anapeesna Bopoonepa3™
1.23 Vausepcurer UTMO, Cankt-TletepOypr, 197101, Poccniickas ®enepanns

I ghadeerdarwesh32@gmail.com, https://orcid.org/0000-0003-1116-9410
2 hammoudgj@gmail.com, https://orcid.org/0000-0002-2033-0838
3 alice w@mail.ru™, https://orcid.org/0000-0001-6691-6167

AHHOTALUA

Beenenne. Kubernetes — mupoxo ucmonaszyeMast miaTgopMa ¢ OTKPHITEIM HCXOAHBIM KOZOM JUIS yIIPaBJICHUS
KOHTCHHEPU3UPOBAHHBIMY HArPy3KaMU U Pa3BepThIBaHMs IPUIOKECHUNA B MUKpOCEpPBUCHOU apxurekrype. Hecmorps
Ha TOMYJSIPHOCTB, Tutatdpopma Kubernetes nMeeT MHOTOUYNMCIIEHHBIE TIPOOIEMEI, CBSI3aHHbBIE ¢ 0€30IaCHOCTHIO.
CyecTByonue pemenus ajis 00HapyKeHHsl aHOMaJIBHOTO noBejgeHus B cpene Kubernetes He mo3BossioT
JACTCKTUPOBATH aHOMAJIbHYIO aKTUBHOCTD, CBA3AHHYIO C aTaKaMU 3JIOYMBIIIJICHHHUKOB, B PEXKUME PE€AJIbHOI'O BPEMCHU.
Mertoa. [Ipencrasien HOBbIN criocob cOopa XxapakTepucTHK ¢ y3i0B miatrdopmsl Kubernetes ast oOHapykeHus

© Darwesh G., Hammoud J., Vorobeva A.A., 2023

38 Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHbLIX TEXHONOMMA, MeXaHuKn 1 ontukn, 2023, Tom 23, N2 3
S Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 3

http://ntv.ifmo.ru/
http://ntv.ifmo.ru/en/
mailto:ghadeerdarwesh32@gmail.com
https://orcid.org/0000-0003-1116-9410
mailto:hammoudgj@gmail.com
https://orcid.org/0000-0002-2033-0838
mailto:alice_w@mail.ru
https://orcid.org/0000-0001-6691-6167
mailto:ghadeerdarwesh32@gmail.com
https://orcid.org/0000-0003-1116-9410
mailto:hammoudgj@gmail.com
https://orcid.org/0000-0002-2033-0838
mailto:alice_w@mail.ru
https://orcid.org/0000-0001-6691-6167

G. Darwesh, J. Hammoud, A.A. Vorobeva

aHoMainuid. [1pesyiokeH HOBBIN areHT MOHUTOPUHTA ¢ COOCTBEHHBIMHU YKCTPAKTOPAMH M HACTPaUBAaEMbIMH IIPaBUJIAMH,
KOTOpBbIe COOMPAIOT BaKHBIE METPUKH C Y3JIOB peasbHOi cuctembl Kubernetes M SKCHOPTHPYIOT UX B LIEHTPAIbHBIN
Habop naHHbIX. [IppMeHeHBl METpHUKHN (CBA3aHHBIE C UCIIOIB30BAHUEM JMCKA, MIPOIECCOPa U CETH), MONTyUEHHBIE OT
skcroprepoB Prometheus. OcHOBHbIE pe3y 1bTaThl. BrimonneHa cumyssamus B peasibHoi cpene Kubernetes Ha o0maqHOi
miarpopme Microsoft Azure. [lomydeHHBIE pe3ynbTaThl OKA3ald, YTO MPEAIOKESHHBIA areHT YCIemHo coopar 24
METPHKHU B IIEHTPATU30BAHHYIO 0a3y MaHHBIX 3a KOPOTKoe BpeMsi. OTOOpaHHbBIE METPHKH MOTYT OBITh HCIIOIb30BAHBI
JUISL CO3JIaHMSI Pa3MEUCHHOT0 Habopa JaHHBIX BPEMEHHBIX PSJOB C AaHOMAJMSIMHU, CO3aBaeMbIMU MHUKPOCEPBHCOM.
JlanHOe pelreHne Mo3BOJIUT OOHAPY)KMBATh aTakH B peaslbHOM BpeMeHH B cpene Kubernetes Ha ocHOBe moBeeHHUS
CKOMIIPOMETHPOBAaHHBIX y3JIOB B ee kiactepe. Oocyxaenne. [IpemioxkeHHblil criocod n pa3paboTaHHBIH areHT
MOHHTOPHHIA MOTYT OBITH IPUMEHEHBI [U1s1 HOPMHUPOBaHHsI HAOOPOB IAHHBIX JUIsl 00yUESHUsI MOJIeTIeil AeTEKTHPOBaHUS
aHomanuii B cpeie Kubernetes, 0CHOBaHHBIX Ha TEXHOJIOTHAX MCKYCCTBEHHOTO MHTEIUICKTA, B PEXKUME PEabHOTO
BpemeHH. [lomyueHHble pe3ynbTaTsl OyIyT MOIE3HBI HCCIEA0BATEIsIM U CTIEIIMAIICTaM B 001acTi KnbepOe3omacHOCTH
npuioxenns Kubernetes.

Kurouesble ciioBa

Kubernetes, 6e3omnacnocts, MoHnTOpHHT Kubernetes, oOHapykeHHUe aTak, BHISIBICHIE aHOMAIHI

Cceplaka pas nutupoBanus: Japsum I, Xammyn XK., Bopo6rea A.A. HoBrlil ctoco6 cOopa TaHHBIX A
0OHapyKeHHs aHOMAILHOTO MoBeIeHus B cpere Kubernetes u arent mist c6opa MeTprK ¢ y310B // HayqHO-TeXHIIeCKIit
BECTHHK MH()OPMAMOHHBIX TeXHOIOTHH, Mexanuku u ontuku. 2023. T. 23, Ne 3. C. 538-546 (na anni. s3.). doi:

10.17586/2226-1494-2023-23-3-538-546

Introduction

The popularity of containerization technology has
increased in recent years, with developers adopting it to
address various real-world challenges, such as optimizing
fetched, virtual machines auto-scaling, stack adjusting,
performance misfortune issues, and various others
[1]. Kubernetes has emerged as a popular platform for
managing containerized workloads and deploying
applications in a microservices architecture. However,
Kubernetes deployments are vulnerable to security risks
and existing solutions for detecting anomalous behavior
within the system lack real-time detection capabilities.

In this study, we present a new monitoring agent for
the Kubernetes system that collects important security
and performance metrics from nodes in real-time. The
agent features custom extractors and rules to ensure the
collection of relevant security metrics, and exports them to
a centralized database. The collected dataset will be used
in future research to develop a machine learning module
for anomaly detection.

The study begins with a background section that
clarifies the significance of the proposed work. This
section covers several topics including the current state
of monitoring solutions in Kubernetes, the importance
of the node exporter project, and the security challenges
within the system. The study also includes a discussion of
recent security challenges and threats in the Kubernetes
environment to provide context for the proposed work
and explain why it is necessary to address these security
issues. The next section highlights the recent security
challenges and threats in the Kubernetes environment.
Finally, we describe the main contribution of this work,
the new monitoring service that we have developed, and
its ability to collect security metrics and export them to a
central database provisioned as a Postgres deployment in
the Kubernetes system.

Background

Kubernetes is a widely adopted open-source platform
for the orchestration of containerized services across a

dispersed cluster of nodes. It offers a robust infrastructure
with the capability for zero-downtime deployment,
scaling, automatic rollback, self-healing, load balancing,
and service discovery [2]. This platform is utilized for the
deployment, management, scaling, and composition of
application containers over a cluster of hosts.

At a high level, a Kubernetes environment consists of
a control plane (master), a distributed storage system for
maintaining the stability of the cluster state (etcd), and
multiple cluster nodes (Kubelets)!. Fig. 1 describes the
Kubernetes architecture overview.

The control plane is comprised of various components
to manage object states, including the Kube-apiserver
which implements a RESTful interface to interact with
libraries and tools for cluster administration, the Kube-
controller-manager which maintains the state of the
cluster, and the Kube-scheduler which plans and schedules
workloads across nodes in the cluster [3].

Cluster nodes are machines managed by the master
nodes and are equipped with the Kubelet and Kube-proxy
components on top of Docker.

The fundamental Kubernetes objects aret:

— The Services used to characterize policies and logical
set of Pods accessed by these policies.

— Volume is a directory accessible to all containers
running inside the Pod.

— The pod is the smallest execution unit in the Kubernetes
environment. It presents a single application that can
consist of multiple storage volumes and containers.
There are different sorts of pods [4]:

— ReplicaSet, the default, is a simple type relatively. It

guarantees the required number of pods are running.

— Deployment is an explanatory way of managing

pods through ReplicaSets. Incorporates rollback and
rolling update mechanisms.

— Daemonset guarantees that each node will run an

instance of a pod. Utilized for cluster services like
log forwarding and monitoring.

I Kubernetes Documentation | Kubernetes. Available at:
https://kubernetes.io/docs/home/ (accessed: 31.08.2022).

Hay4HO-TexXHU4eCcKuit BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MexaHukn 1 ontukun, 2023, Tom 23, N2 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 3

539

https://kubernetes.io/docs/home/

A novel approach to feature collection for anomaly detection in Kubernetes environment...

Kubectl

etcd
controller Kube
manager apiserver <

scheduler

!

Load Balancer

Kubelet

System Services

Fig. 1. Kubernetes Architecture Overview

— StatefulSet is custom fitted to managing pods that
must hold on or maintain state.

— CronJob and Job run short-lived jobs as a one-off or
on a schedule.

Kubernetes Monitoring

The application of containerization in a Kubernetes
environment presents a unique challenge for monitoring.
Monitoring the performance and resolving issues in
a system that consists of hundreds of microservices
deployed across thousands, or even millions, of ephemeral
containers, requires a robust approach.

Kubernetes is a highly decentralized system comprised
of various nested components. Monitoring in a Kubernetes
environment involves monitoring the application and hosts
as well as the containers and clusters. Additionally, the
use of automated scheduling in Kubernetes introduces
an additional layer of complexity, as the workloads and
resources are managed optimally and dynamically, making
it difficult to determine the identity or number of nodes
running on the pods. To address this, a robust tagging
system can be employed alongside logging to collect
information from the clusters, which can then be exposed to
an endpoint for a service to collect and analyze the metrics.

A comprehensive monitoring solution for Kubernetes
must meet certain critical requirements, including:

— monitoring of all layers of the technology stack,
including the host infrastructure on which Kubernetes
runs, core components, pods, nodes, and containers
within the cluster as well as all applications and services
running in Kubernetes containers;

— dynamic identification and monitoring of services as
they arise;

— providing a means of connecting relevant information
for grouping and analysis of related logs, metrics, and
other observability data.

In the Kubernetes environment, the provision of
all required tools for monitoring resources, such as the
collection of metrics from nodes within the cluster, is not
natively supported. To address this requirement, the use of
an external node-exporter service is proposed. We used the
Prometheus Exporter designed specifically for collecting

metrics and monitoring the host system. It is a widely used
service for exposing hardware and operating system metrics
from *NIX-based Bits!, and can also be used for tagging
and exporting metrics in the Kubernetes environment.

As depicted in Fig. 2, the Node Exporter component
is integrated into the Prometheus Operator which is
responsible for the Kubernetes-native deployment and
management of Prometheus and related monitoring
components. The Node Exporter operates as an agent
on each node within the cluster which may also host the
Kubernetes cluster. Its function is to gather monitoring data,
such as memory usage, CPU utilization, disk space, inodes,
and network statistics, from each node and forward it to the
Prometheus server2. The Prometheus server stores this data
as time-series data in the form of (timestamp, metric) pairs
which can then be visualized using tools such as Grafana.

Kubernetes security

The deployment of Kubernetes can be performed in
various settings, including on-premises, on bare metal,
and within public clouds (either by creating a custom
Kubernetes construct on virtual machines or by utilizing a
managed service). Kubernetes was designed to be highly
portable enabling users to effectively switch between these
environments and move their workloads.

This high level of customization in Kubernetes makes
it adaptable to a wide range of scenarios; however, it also
represents a significant weakness in terms of security [5].
Kubernetes is designed to be highly customizable and
requires users to enable specific functionalities to secure
their cluster. This means that the engineers responsible
for deploying the Kubernetes platform must have an
in-depth understanding of all potential attack vectors
and vulnerabilities that can result from inadequate
configuration.

I GitHub — prometheus/node_exporter: Exporter for
machine metrics. Available at: https://github.com/prometheus/
node exporter (accessed: 10.04.2023).

2 Getting started | Prometheus. Available at: https://
prometheus.io/docs/prometheus/latest/getting_started/ (accessed:
10.04.2023).

540

Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHbLIX TEXHONOMMA, MeXaHuKn 1 ontukn, 2023, Tom 23, N2 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 3

https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://prometheus.io/docs/prometheus/latest/getting_started/
https://prometheus.io/docs/prometheus/latest/getting_started/

G. Darwesh, J. Hammoud, A.A. Vorobeva

Prometheus
Operator

/Namespace

! N

Prometheus

l«— Service Monitor €

Node-exporter
(daemonset)
Node-exporter Node-exporter
(pod) (pod)

Node-exporter
(pod)

L

y

y 4
Virtual Machine 1 l VirtualMachine2] ‘ VirtualMachine3]

Fig. 2. Prometheus Node Exporter

Tesla Inc. experienced a security breach as a result of
the absence of password protection on their Kubernetes
administrative console. In a separate incident, Capital One’s
inadequate AWS firewall definitions led to the exposure
of 30 GB of credit application data affecting 106 million
customers. These events highlight the significance of
placing security as a top priority alongside the deployment
of Kubernetes. There are numerous threats to Kubernetes
workloads including the potential for attackers to gain
control of the entire cluster by breaching the control plane.
Additionally, attackers can compromise individual pods or
the physical host running Kubernetes pods as well as any
unsecured open connections to the public making network
connections a possible entry point. Finally, containers are
vulnerable to threats due to misconfigurations or backdoors
in the container image, which can allow attacker’s access
to the physical host.

In [3] researchers described the most important
Kubernetes security best practices that were reported by
practitioners including:

— authorization and authentication to verify API requests,
enforce non-root user access only, and disable
anonymous login;

— adoption of network security policies and pod policies
to regulate (restrict) traffic and ensure contextual
security of pods within the cluster;

— keeping the version up-to-date and applying the latest
security patches;

— access restriction and implementation of encryption
techniques to secure sensitive data stored in etcd;

— implementation of resource requests and limitations;

— enabling SSL/TLS support and creating separate
namespaces.

Related work

In the study conducted by Yu et al. [6], the focus was
on the investigation of security concerns related to service
communications in microservice-enabled fog applications.
A comprehensive literature search was conducted with a

specific focus on the security of microservice architecture.
As a result of the literature search, 66 important papers
were identified and analyzed accordingly. The authors
centered their analysis on four major categories of security
issues in microservice communication: data issues,
container issues, network issues, and authorization issues.

One important aspect of Kubernetes security monitoring
is the detection of anomalous behavior in the cluster. The
existing approaches fall into three categories: log-based
anomaly detection, virtual network monitoring, and
container security measures.

Several studies have focused on log-based anomaly
detection using methods such as source code analysis
and information retrieval to create composite features for
automatically detecting runtime problems in the system
[7] Other studies have investigated the use of log message
grouping and counting as well as the inherent linear
characteristics of normal program workflows, to detect
anomalies in logs. However, these methods are limited in
their ability to detect anomalies caused by external attacks,
such as web service attacks and Common Vulnerabilities
and Exposures (CVE) attacks.

Another area of focus in Kubernetes security monitoring
is the monitoring of the virtual network. Researchers
have explored the use of network flow analysis, intrusion
detection systems [8], and network segmentation to enhance
the security of container-based networks [9]. These studies
are limited to detecting anomalies at the network layer and
do not account for the fact that malicious behavior can be
disguised as normal login and installation activities.

In recent studies, researchers have introduced anomaly-
based detection mechanisms to address security concerns
in container environments. Various machine learning
technics are used to analyze real-time performance data
[6], including CPU utilization, memory utilization, and
network metrics, disk read/write rate, network receive/
transmit rate, and container management information to
detect the anomaly in containers. These characteristics do
not differ significantly if the system is in a normal state and
during a cyberattack.

Hay4HO-TexXHU4eCcKuit BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MexaHukn 1 ontukun, 2023, Tom 23, N2 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 3

541

A novel approach to feature collection for anomaly detection in Kubernetes environment...

In [10], KubAnomaly is proposed, a system that
provides security monitoring capabilities for anomaly
detection on the Kubernetes orchestration platform.
Authors have designed a container monitoring module
for Kubernetes and applied neural network techniques to
construct classification models that enhance its capability of
detecting abnormal behaviors. The described agent service
collects only events from monitor logs from Docker-based
containers with Sysdig and Falco. Sysdig is a diverse
and complex system offering complete monitoring suite
including visualization and alerting. It might be used for the
metrics collection, but there are more light-weighted tools
that suits that task more, like Prometheus.

The security of containers is an important topic
of discussion. As highlighted in the SANS12 report,
several tools have been developed to enhance container
security. For instance, AppArmor is a policy-based
Linux kernel security module that allows system
administrators to restrict process capabilities, such as
network access and file read/write permissions, by using
security profiles.

A monitoring system that leverages Kubernetes for
dynamic resource provisioning in cloud environments was
presented by Chang et al. [11]. Furthermore, Shah and
Dubaria [12] compared the management features of Swarm,
Docker, Kubernetes, and Google Cloud Platform, and noted
that Kubernetes provides features, such as deployment,
monitoring, and ease of scalability.

In the study conducted by Sultan et al. [1], a
comprehensive review of the literature related to container
security was performed. The authors presented the threats
for four utilized cases of securing containers and elaborate
on security threats and solutions to each security risk
concerning each use case. The use cases outlined were
securing containers from applications, protecting containers
from each other and host, and finally, protecting the host
from containers.

Muralidharan et al. [13] introduced a Kubernetes-based
system for monitoring and managing the Internet of Things
(IoT) in smart cities. In [14], Burns et al. documented
the development of container management frameworks at
Google and described the evolution of two internal systems,
Brog and Omega, into Kubernetes.

Approach to feature collection for anomaly detection
in Kubernetes environment and novel agent
for metrics collection from Kubernetes nodes

In this section, we present our implemented system
for monitoring and collecting metrics directly from nodes
(and not from logs) operating within the Kubernetes
environment.

Our system addresses the design challenges associated
with the collection and export of data from nodes for use in
anomaly classification models. Our novel agent service has
been tailored for Kubernetes allowing for easy deployment
within the Kubernetes environment. The agent service
must be installed on every node in order to collect metrics
for the entire cluster, which are then transmitted as time
series data to a central database (DB) for easy analysis and
processing.

Future anomaly classification module

Central DB

>_>(.

Agents send monitoring metrics to central DB

Monitoring agent

Monitoring agent

Fig. 3. Architecture of the system with proposed new
monitoring agent in the Kubernetes environment for security
purposes

Novel agent service for metrics collection
from Kubernetes nodes

In our study, we have designed a novel agent service
within the Kubernetes environment for collecting
monitoring metrics from the nodes!. Fig. 3 presents the
architecture of the proposed system. The objective of this
deployment is to understand the behavior of all nodes, which
is achieved through the deployment of the agent as a pod on
every node within the cluster. To reduce the development
workload, the docker image is based on the node-exporter
service which is specifically designed for the collection
of metrics and monitoring of the host system. Our agent
utilizes the features of the node-exporter service to gather
data and process it into a useful format for further analysis.

The new agent deployment consists of two Kubernetes
components: the exporter service which accesses the
exporter API to understand the metrics and data to be
collected, and the Daemonset which is a Kubernetes
workload that ensures the provisioning of the agent pods
on each node in the cluster.

The agent also requires a prepared Postgres database to
connect to and export our data. The number of records and
the interval at which they are to be recorded are specified as
environment variables in the agent’s deployment definition
and made available to the pods within the deployment.
These variables are utilized by the agent to determine its
operational behavior and tasks.

The selection of metrics from nodes is a challenge in
the implementation of our system. An excessive collection
of metrics would cause an overload on the nodes and
negatively impact performance. To address this challenge,
we have selected the most relevant and useful metrics
for our security-related analysis. This approach not only
captures the behavior of the nodes but also ensures optimal
performance.

Feature collection for anomaly detection
in Kubernetes environment

Our agent exports metrics to the Postgres database. The
collected metrics are arguments we pass to the deployment

I ghadeerda/Kubernetes-monitoring-agent. Available at:
https://github.com/ghadeerda/Kubernetes-monitoring-agent/tree/
main (accessed: 10.04.2023).

542

Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHbLIX TEXHONOMMA, MeXaHuKn 1 ontukn, 2023, Tom 23, N2 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 3

https://github.com/ghadeerda/Kubernetes-monitoring-agent/tree/main
https://github.com/ghadeerda/Kubernetes-monitoring-agent/tree/main

G. Darwesh, J. Hammoud, A.A. Vorobeva

Table 1. The proposed metrics and the feature set to construct anomaly detection model

Collected features (metric name)

Description

cpu_sec_idle

Seconds the CPUs spent in idle mode

disk av_per Filesystem space available percent to non-root users
disk read The total number of bytes read successfully
disk write The total number of bytes written successfully

net _receive

Network device statistic receive bytes

mem_pressure

/proc/vmstat information field pgmajfault

mem_av_per

Memory space available percent

forks_total

The total number of forks

intr The total number of interrupts serviced
loadl 1 minute load average

Load5 5 minutes load average

Loadl5 15 minutes load average

receive_drop

Network device statistic received and dropped

receive_errs

Network device statistic received with errors

transmit_packets

Network device statistic transmitted packets

tcp_sock_alloc

tL)

The number of TCP (Transmission Control Protocol) sockets in state “allocate

tep_sock inuse

The number of TCP sockets in state “in use”

tcp_sock mem

The number of TCP sockets in state “memory”

udp_sock_inuse

The number of UDP (User Datagram Protocol) sockets in state “in use”

udp sock mem

The number of UDP sockets in state “memory”

ipv4_sock inuse

The number of IPv4 sockets “in use”

est_conn TCP connections in the state “established”
lis_conn TCP connections in the state “listen”
open_fds The number of open file descriptors

of pods. It includes current events listed in the Table 1,
that includes the collected feature to construct anomaly
classification model.

The agent service scraps the metrics listed in the table
above and exports them to the central database at an interval
of 10 seconds; the interval is an environment variable that
is exported to the pods. This interval was chosen to strike
a balance between monitoring accuracy and performance
efficiency. Based on research conducted by Akamai [10],
approximately 900 attacks can occur within a 10-second
time frame. Thus, a 10-second collection duration was
deemed appropriate for our purposes. The collected
metrics from central database are then utilized to develop
a classification model for detecting anomalies in container
behavior. This enables us to monitor the behavior of
containers and gather monitoring metrics effectively.

The central database is structured to include a separate
table for each node, wherein each record comprises of
a time-series value and an attack indicator. This attack
indicator column is intended to be utilized in future for the
purpose of identifying attack records for machine learning
modules.

Testing environment

The testing of our monitoring agent was performed in
a real Kubernetes environment hosted on Microsoft Azure
cloud using Azure Kubernetes Service (AKS). The cluster

consisted of two nodes and a public load balancer with
a default security group, and utilized Kubernetes version
1.22.

The docker image was built using prom/node-exporter:
v1.4.0 as builder layer and pushed the new image to our
container registry in Azure cloud. For the agent deployment
we specify 0.5 CPU and 1G RAM, and its service was
exposed on port 9100 for testing.

The result of our experiment is stored in Postgres:
14-alpine database which is running in the AKS and had
an Azure Disk (5G) attached to it to store our data. To test
the metrics obtained from nodes under different conditions,
a new pod was deployed with the “stress” utility to subject
the deployment to maximum usage over a prolonged
period of time. This CPU load test was designed to push
the processing power to its limits and generate different
data values based on the stress load.

Results

Upon executing our agent on various nodes, we have
observed the creation of a table (Table 2) in our database for
each node, which displays the collected metrics accurately
indicating the status of each node before and after the
stress load test was conducted. Our defined metrics were
collected successfully and are presented in a manner that
will facilitate the development of future machine learning
modules.

Hay4HO-TexXHU4eCcKuit BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MexaHukn 1 ontukun, 2023, Tom 23, N2 3 43
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 3 S

A novel approach to feature collection for anomaly detection in Kubernetes environment...

Table 2. Example of records in the resulting table in central database, collected metrics for one node with an interval of 10 seconds

id date time cpu_sec_idle | disk av per disffégad dislii\(i)vgrite net receive | mem_pressure | mem_av_per
1 2023-02-12 | 12:33:32 754.765 80.5205 6.66 6.75 3,461 4474 83.9407
2 2023-02-12 | 12:33:42 762.78 80.5205 6.66 6.75 5,428 4474 83.8183
3 2023-02-12 | 12:33:52 771.51 80.5205 6.66 6.75 6,913 4474 83.7209
4 2023-02-12 | 12:34:02 780.2 80.5205 6.66 6.75 8,398 4474 83.6702
5 2023-02-12 | 12:34:12 788.77 80.5205 6.66 6.75 9,883 4474 83.7633
6 2023-02-12 | 12:34:22 797.555 80.5205 6.66 6.75 11,368 4474 83.6889
7 2023-02-12 | 12:34:32 806.21 80.5204 6.66 6.75 12,895 4474 83.83
8 2023-02-12 | 12:34:42 814.2 80.5202 6.66 6.76 14,880 4474 83.537
9 2023-02-12 | 12:34:52 822.91 80.5203 6.66 6.76 16,435 4474 83.5568
10 | 2023-02-12 | 12:35:02 831.535 80.5203 6.66 6.76 17,920 4474 83.5106
11 | 2023-02-12 | 12:35:12 839.535 80.5203 6.66 6.76 19,475 4474 83.6359
12 | 2023-02-12 | 12:35:22 848.29 80.5203 6.66 6.76 21,002 4474 83.5364
13 | 2023-02-12 | 12:35:32 856.925 80.5202 6.66 6.76 22,487 4474 83.5117
14 | 2023-02-12 | 12:35:42 865.21 80.5202 6.66 6.76 24,042 4474 83.5375
15 | 2023-02-12 | 12:35:52 873.925 80.5202 6.66 6.76 25,527 4474 83.5383

The collected metrics are separated by periods of time
considering the env variable (INTERVAL) we defined in
the deployment.

After we apply z-score normalization to understand the
probability of a score occurring within the distribution of
the data, z-score is calculated by dividing the difference
between the observed value and the sample mean by
the sample standard deviation. Results are shown in the
Table 3.

If z-score is close to zero it means that the data point is
close to the average, a positive z-score means that the data
point is above average, and a negative means the data point
is below average.

Z-score data then could be used to build anomalies
detection model. A data point can be considered anomaly or
unusual if its z-score is above threshold values. The optimal
threshold should be investigated. If z-score variance is close
to the normal distribution, recommended optimal threshold
is between —2.0 and +2.0. Otherwise in the case of z-score
variance is more than 1.0, using ordinary threshold cannot
point out anomaly.

Conclusion and future work

Kubernetes has emerged as the most widely adopted
orchestration platform for Docker containers, and

Table 3. Part of dataset after z-score normalization

id date time cpu_sec_idle | disk av_per | disk read | disk write | net receive | mem_pressure | mem_av_per
1 2023-12-02 | 12:33:32 —1.76304 0.63778 —0.70363 | —0.63980 | —1.73033 —0.70616 0.64287
2 2023-12-02 | 12:33:42 —1.74976 0.63778 —0.70363 | —0.63970 | —1.71260 —0.70616 0.60106
3 2023-12-02 | 12:33:52 —1.73529 0.63778 —0.70363 | —0.63959 | —1.69922 —0.70616 0.56779
4 2023-12-02 | 12:34:02 —-1.72089 0.63778 —0.70363 | —0.63938 | —1.68583 —0.70616 0.55048
5 2023-12-02 | 12:34:12 —1.70670 0.63778 —0.70363 | —0.63931 | —1.67244 —0.70616 0.58228
6 2023-12-02 | 12:34:22 -1.69214 0.63778 —0.70363 | —0.63925 | —1.65906 —0.70616 0.55686
7 2023-12-02 | 12:34:32 -1.67780 0.63775 —0.70363 | —0.63918 | —1.64529 —0.70616 0.60506
8 2023-12-02 | 12:34:42 —1.66456 0.63768 —0.70363 | —0.63862 | —1.62740 —0.70616 0.50498
9 2023-12-02 | 12:34:52 -1.65013 0.63772 —0.70363 | —0.63856 | —1.61338 —0.70616 0.51174
10 | 2023-12-02 | 12:35:02 —1.63584 0.63772 —0.70363 | —0.63844 | —1.59999 —0.70616 0.49596
11 | 2023-12-02 | 12:35:12 —-1.62259 0.63772 —0.70363 | —0.63833 | —1.58597 —0.70616 0.53876
12 | 2023-12-02 | 12:35:22 —1.60808 0.63772 —0.70363 | —0.63810 | —1.57221 —0.70616 0.50478
13 | 2023-12-02 | 12:35:32 -1.59377 0.63768 —0.70363 | —0.63792 | —1.55882 —0.70616 0.49634
14 | 2023-12-02 | 12:35:42 —1.58005 0.63768 —0.70363 | —0.63782 | —1.54481 —0.70616 0.50515
15 | 2023-12-02 | 12:33:32 —-1.76304 0.63778 —0.70363 | —0.63980 | —1.73033 —0.70616 0.64287
544 Hay4HO-TeXHN4eCKnin BECTHUK MHPOPMALNOHHbBIX TEXHONOMMIA, MEXaHUKKN 1 onTukn, 2023, Tom 23, N2 3

Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 3

G. Darwesh, J. Hammoud, A.A. Vorobeva

is extensively utilized for application deployment
and microservice creation. With advancements in
containerization technology, information technology
organizations are leveraging Kubernetes for managing
their systems and reporting benefits during the deployment
process.

However, security concerns have been raised in the
Kubernetes environment as potential vulnerabilities can be
exploited by hackers to cause damage to company resources.

References

1. Sultan S., Ahmad I., Dimitriou T. Container security: Issues,
challenges, and the road ahead. /EEE Access, 2019, vol. 7, pp. 52976—
52996. https://doi.org/10.1109/ACCESS.2019.2911732

2. Shamim Md.S.I., Bhuiyan F.A., Rahman A. XI Commandments of
kubernetes security: A systematization of knowledge related to
kubernetes security practices. Proc. of the 2020 IEEE Secure
Development (SecDev), 2020, pp. 58—64. https://doi.org/10.1109/
SecDev45635.2020.00025

3. Darwesh G., Hammoud J., Vorobeva A.A. Security in kubernetes: best
practices and security analysis. Bulletin of the Ural Federal District.
Security in the Information Sphere, 2022, vol. 22, no. 2, pp. 63—69.
https://doi.org/10.14529/SECUR220209

4. Mondal S.K., Pan R., Kabir HM.D., Tian T., Dai H.N. Kubernetes in
IT administration and serverless computing: An empirical study and
research challenges. Journal of Supercomputing, 2022, vol. 78, no. 2,
pp. 2937-2987. https://doi.org/10.1007/s11227-021-03982-3

5. Shamim S.I. Mitigating security attacks in kubernetes manifests for
security best practices violation. Proc. of the 29! ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), 2021, pp.
1689—1690. https://doi.org/10.1145/3468264.3473495

6. YuD., JinY., Zhang Y., Zheng X. A survey on security issues in
services communication of Microservices-enabled fog applications.
Concurrency and Computation: Practice and Experience, 2019, vol.
31, no. 22, pp. e4436. https://doi.org/10.1002/CPE.4436

7. Loul.-G.,FuQ., Yang S., Xu Y., Li J. Mining invariants from console
logs for system problem detection. Proc. of the USENIX Annual
Technical Conference, 2010, pp. 1-14.

8. Lin C.H., Tien C.W., Pao H.K. Efficient and effective NIDS for cloud
virtualization environment. Proc. of the 4 IEEE International
Conference on Cloud Computing Technology and Science
Proceedings, 2012, pp. 249-254. https://doi.org/10.1109/
cloudcom.2012.6427583

9. Gomez M.E. Full Packet Capture Infrastructure Based on Docker
Containers. Tech. rep. SANS Institute InfoSec Reading Room. 2016.

10. Tien C.-W., Huang T.-Y., Tien C.-W., Huang T.-C., Kuo S.-Y.
KubAnomaly: Anomaly detection for the Docker orchestration
platform with neural network approaches. Engineering Reports, 2019,
vol. 1, no. 5, pp. €12080. https://doi.org/10.1002/eng2.12080

11. Chang C.-C., Yang S.-R., Yeh E.-H., Lin P., Jeng J.-Y. A Kubernetes-
based monitoring platform for dynamic cloud resource provisioning.
Proc. of the GLOBECOM 2017 — 2017 IEEE Global
Communications Conference, 2017, pp. 1-6. https://doi.org/10.1109/
GLOCOM.2017.8254046

12. Shah J., Dubaria D. Building modern clouds: Using Docker,
Kubernetes & Google Cloud Platform. Proc. of the 2019 IEEE 9t
Annual Computing and Communication Workshop and Conference
(ccwce), 2019, pp. 0184-0189. https://doi.org/10.1109/
CCWC.2019.8666479

13. Song M., Zhang C., Haihong E. An auto scaling system for API
Gateway based on Kubernetes. Proc. of the 2018 IEEE 9t
International Conference on Software Engineering and Service
Science (ICSESS), 2018, pp. 109—-112. https://doi.org/10.1109/
ICSESS.2018.8663784

14. Burns B., Grant B., Oppenheimer D., Brewer E., Wilkes J. Borg,
Omega, and Kubernetes. Queue, 2016, vol. 14, no. 1, pp. 70-93.
https://doi.org/10.1145/2898442.2898444

In this study, we have developed a new agent service
that collects metrics from the Kubernetes nodes and
transmits them to a central database. The exported data
encompass the most critical metrics for defining the nodes
behavior and the attack baselines.

Furthermore, we aim to investigate the implementation
of an anomaly detection plugin for detecting these
anomalies and predict anomalies in the deployed system,
or extrapolate the approach for use in another system.

Jluteparypa

1. Sultan S., Ahmad 1., Dimitriou T. Container security: Issues,
challenges, and the road ahead // IEEE Access. 2019. V. 7. P. 52976—
52996. https://doi.org/10.1109/ACCESS.2019.2911732

2. Shamim Md.S.I., Bhuiyan F.A., Rahman A. XI Commandments of
kubernetes security: A systematization of knowledge related to
kubernetes security practices // Proc. of the 2020 IEEE Secure
Development (SecDev). 2020. P. 58-64. https://doi.org/10.1109/
SecDev45635.2020.00025

3. Darwesh G., Hammoud J., Vorobeva A.A. Security in kubernetes: best
practices and security analysis / Bectauk YP®O. BezonacHocts B
undopmanmonHoit chepe. 2022. T. 22. Ne 2. C. 63—-69. https://doi.
org/10.14529/SECUR220209

4. Mondal S.K., Pan R., Kabir HM.D., Tian T., Dai H.N. Kubernetes in
IT administration and serverless computing: An empirical study and
research challenges // Journal of Supercomputing. 2022. V. 78. N 2.
P. 2937-2987. https://doi.org/10.1007/s11227-021-03982-3

5. Shamim S.I. Mitigating security attacks in kubernetes manifests for
security best practices violation // Proc. of the 29th ACM Joint
Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/
FSE). 2021. P. 1689-1690. https://doi.org/10.1145/3468264.3473495

6. YuD., JinY., Zhang Y., Zheng X. A survey on security issues in
services communication of Microservices-enabled fog applications //
Concurrency and Computation: Practice and Experience. 2019. V. 31.
N 22. P. ¢4436. https://doi.org/10.1002/CPE.4436

7. Loul.-G.,FuQ., Yang S., Xu Y., Li J. Mining invariants from console
logs for system problem detection // Proc. of the USENIX Annual
Technical Conference. 2010. P. 1-14.

8. Lin C.H., Tien C.W., Pao H.K. Efficient and effective NIDS for cloud
virtualization environment // Proc. of the 4th IEEE International
Conference on Cloud Computing Technology and Science
Proceedings. 2012. P. 249-254. https://doi.org/10.1109/
cloudcom.2012.6427583

9. Gomez M.E. Full Packet Capture Infrastructure Based on Docker
Containers: Tech. rep. SANS Institute InfoSec Reading Room, 2016.

10. Tien C.-W., Huang T.-Y., Tien C.-W., Huang T.-C., Kuo S.-Y.
KubAnomaly: Anomaly detection for the Docker orchestration
platform with neural network approaches // Engineering Reports.
2019. V. 1. N 5. P. €12080. https://doi.org/10.1002/eng2.12080

11. Chang C.-C., Yang S.-R., Yeh E.-H., Lin P., Jeng J.-Y. A Kubernetes-
based monitoring platform for dynamic cloud resource provisioning
// Proc. of the GLOBECOM 2017 — 2017 TIEEE Global
Communications Conference. 2017. P. 1-6. https://doi.org/10.1109/
GLOCOM.2017.8254046

12. Shah J., Dubaria D. Building modern clouds: Using Docker,
Kubernetes & Google Cloud Platform // Proc. of the 2019 IEEE 9th
Annual Computing and Communication Workshop and Conference
(CCWC). 2019. P. 0184-0189. https://doi.org/10.1109/
CCWC.2019.8666479

13. Song M., Zhang C., Haihong E. An auto scaling system for API
Gateway based on Kubernetes // Proc. of the 2018 IEEE 9th
International Conference on Software Engineering and Service
Science (ICSESS). 2018. P. 109-112. https://doi.org/10.1109/
ICSESS.2018.8663784

14. Burns B., Grant B., Oppenheimer D., Brewer E., Wilkes J. Borg,
Omega, and Kubernetes // Queue. 2016. V. 14. N 1. P. 70-93. https://
doi.org/10.1145/2898442.2898444

Hay4HO-TexXHU4eCcKuit BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MexaHukn 1 ontukun, 2023, Tom 23, N2 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 3

945

https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1109/SecDev45635.2020.00025
https://doi.org/10.1109/SecDev45635.2020.00025
https://doi.org/10.14529/SECUR220209
https://doi.org/10.1007/s11227-021-03982-3
https://doi.org/10.1145/3468264.3473495
https://doi.org/10.1002/CPE.4436
https://doi.org/10.1109/cloudcom.2012.6427583
https://doi.org/10.1109/cloudcom.2012.6427583
https://doi.org/10.1002/eng2.12080
https://doi.org/10.1109/GLOCOM.2017.8254046
https://doi.org/10.1109/GLOCOM.2017.8254046
https://doi.org/10.1109/CCWC.2019.8666479
https://doi.org/10.1109/CCWC.2019.8666479
https://doi.org/10.1109/ICSESS.2018.8663784
https://doi.org/10.1109/ICSESS.2018.8663784
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1109/SecDev45635.2020.00025
https://doi.org/10.1109/SecDev45635.2020.00025
https://doi.org/10.14529/SECUR220209
https://doi.org/10.14529/SECUR220209
https://doi.org/10.1007/s11227-021-03982-3
https://doi.org/10.1145/3468264.3473495
https://doi.org/10.1002/CPE.4436
https://doi.org/10.1109/cloudcom.2012.6427583
https://doi.org/10.1109/cloudcom.2012.6427583
https://doi.org/10.1002/eng2.12080
https://doi.org/10.1109/GLOCOM.2017.8254046
https://doi.org/10.1109/GLOCOM.2017.8254046
https://doi.org/10.1109/CCWC.2019.8666479
https://doi.org/10.1109/CCWC.2019.8666479
https://doi.org/10.1109/ICSESS.2018.8663784
https://doi.org/10.1109/ICSESS.2018.8663784
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1145/2898442.2898444

A novel approach to feature collection for anomaly detection in Kubernetes environment...

Authors

Ghadeer Darwesh — PhD Student, ITMO University, Saint Petersburg,
197101, Russian Federation, https://orcid.org/0000-0003-1116-9410,
ghadeerdarwesh32@gmail.com

Jaafar Hammoud — PhD Student, ITMO University, Saint Petersburg,
197101, Russian Federation, [s¢/ 57222044000, https://orcid.org/0000-
0002-2033-0838, hammoudgj@gmail.com

Alisa A. Vorobeva — PhD, Associate Professor, Saint Petersburg, 197101,
Russian Federation, s¢/ 57191359167, https://orcid.org/0000-0001-6691-
6167, Alice_w@mail.ru

Received 25.11.2022
Approved after reviewing 20.02.2023

ABTOpBI

Japsum I'agup — acnimpant, Yausepcurer UTMO, Cankr-IlerepOypr,
197101, Poccuiickas denepanus, https://orcid.org/0000-0003-1116-9410,
ghadeerdarwesh32@gmail.com

Xammyn Kaadap — acnupant, Yausepcurer MTMO, Canxkr-IletepOypr,
197101, Poccuiickas Denepars, [s¢ 57222044000, https://orcid.org/0000-
0002-2033-0838, hammoudgj@gmail.com

Bopo0beBa Astnca AHJIpeeBHA — KaHJMJIAT TEXHUYECKUX HAyK, 10-
nent, YauBepcureT UTMO, Cankr-IletepOypr, 197101, Poccuiickas
Denepauns, s¢ 57191359167, https://orcid.org/0000-0001-6691-6167,
Alice w@mail.ru

Cmamusi nocmynuna 6 peoaxyuro 25.11.2022
Ooobpena nocie peyensuposanus 20.02.2023

Accepted 16.05.2023 Ipunama x newamu 16.05.2023
@ @ PaboTta nocTynHa no nuueHsnm
@ Creative Commons
«Attribution-NonCommercial»
546 Hay4yHO-TexHn4eckuii BECTHUK MHDOPMALMOHHbLIX TEXHONOMMA, MeXaHuKn 1 ontukn, 2023, Tom 23, N2 3

Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 3

https://orcid.org/0000-0003-1116-9410
mailto:ghadeerdarwesh32@gmail.com
https://orcid.org/0000-0002-2033-0838
https://orcid.org/0000-0002-2033-0838
mailto:hammoudgj@gmail.com
https://orcid.org/0000-0001-6691-6167
https://orcid.org/0000-0001-6691-6167
mailto:Alice_w@mail.ru
https://orcid.org/0000-0003-1116-9410
mailto:ghadeerdarwesh32@gmail.com
https://orcid.org/0000-0002-2033-0838
https://orcid.org/0000-0002-2033-0838
mailto:hammoudgj@gmail.com
https://orcid.org/0000-0001-6691-6167
mailto:Alice_w@mail.ru

