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Abstract

The constituent parts of systems where radiation-catalytic processes occur usually differ in terms of mass and electron
density, structural characteristics, electrophysical and chemical properties. Therefore, interaction between phases in
any form has a sharp effect on the direction and parameters of the processes in individual components. In this work,
X-ray diffraction patterns of nano-ZrO, and nano-TiO, samples were obtained before and after gamma irradiation. The
crystal structures of these samples have been studied. The resulting X-ray diffraction pattern was mainly determined
by the atomic plane (¢), the intensity of the obtained peaks, the corresponding syngony of the sample, the lattice size,
density, lattice constants, and the distance between the phase groups. The X-ray diffraction data were processed using the
Fullprof program. Full-profile processing of ZrO, X-ray diffraction data showed that the initial sample has a monoclinic
structure (space group P21/c) with the following lattice parameters: a = 5.1506 A, b = 5.2080 A, ¢ = 5.3293 A. Full-
profile processing of X-ray diffraction analysis of ZrO, after gamma irradiation showed a change in the structure from the
monoclinic (space group P21/c) phase to the triclinic (space group P1). Full profile processing of TiO, X-ray diffraction
data showed that the sample has a tetragonal structure (space group P42/mnm) with the following lattice parameters:
a=b=4.5931 A, c=2.9592 A and unit cell. As a result of calculations (Bg = 1.27; Rp = 1.98; 42 = 2.68), it was found
that the structure of the initial TiO, sample is single-phase, tetragonal, and is described by the space group P42/mnm.
Crystal structure of ZrO, (monoclinic structures, space group P21/c). Crystal structure of TiO, (tetragonal structure space
group P42/mnm). The scientific component of the article is of interest because it touches upon the issues of structural
transformations of zirconium oxide and titanium under the action of gamma radiation.
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G. Imanova

U XUMHUYECKUM CBoMcTBaM. [1o 3Toii mpuunHe B3aumoaeucTBre (a3 B 1000 GopMe OKa3biBaeT OOJBIIOE BIUSHHE
Ha HanpaBJCHUEC U NapaMETPbl NPOUECCOB B OTACIbHBIX KOMIIOHEHTAaX. B pa60Te MOJIYy4Y€HbI PEHTI€HOTPAMMBI
00pasioB HaHO-ZrO, u HaHno-TiO, 10 u nocne ramma-o0mydeHus. VicenenoBanbl UX KPUCTAIUIMYECKUE CTPYKTYPHI.
MeTtoa. XapakTep NOJy4eHHOH PEHTTEHOTPaMMBI ONPEEsAICs aTOMHOW MIIOCKOCTBIO (€), MHTEHCHBHOCTHIO
MOJTyYEHHBIX THKOB, COOTBETCTBYIOIIEH CHHTOHHEH 00pasia, pa3sMepoM peIIeTKH, IIOTHOCTHIO, TOCTOSHHBIMA
peIIeTKH ¥ PAcCTOSHUEM MeXJTy (a30BBIMU rpynmnaMi. [lomydeHHble TaHHBIC PEHTTEHOCTPYKTYPHOTO aHAIH3a
obpaboransl ¢ momomrsio nmporpammsl Fullprof. OcHoBHbIe pe3yabTaThl. [lomHonpodnibHas 06paboTka TaHHEIX
PEHTIeHOCTPYKTYPHOTO aHaIn3a OKcuja uupkonus (ZrO,) nokasaia, 4To UCXOIHBIH 00pa3el] HMeeT MOHOKINHHYIO
cTpyKTYpy (MpocTpaHcTBeHHas rpymnmna P21/c) co cnemyiommmu napamMeTpamu pemetku: a = 5,1506 A, b =5,2080 A,
c=5,3293 A. TlonnonpoduibHas 06paboTKa PeHTIEHOCTPYKTYPHOTO aHatu3a ZrO, Moce raMMa-o0TydeH s MoKa3aa
M3MEHEHHE CTPYKTYPbI C MOHOKIIMHHO# (pocTpancTBenHas rpymma P21/c) ¢pa3el Ha TPUKIHHHYIO (IPOCTPaHCTBEHHAS
rpyrma P1). IToraonpodunbaas 06paboTka JaHHBIX PEHTTeHOCTPYKTYpHOTo aHanu3a okcuza turana (TiO,) mokasana,
4T0 00pa3el IMeeT TETPArOHAIBHYIO CTPYKTYpY (IIpoCcTpaHCTBeHHAA rpyma P42/mnm) co ciienyrommmu mapameTpaMmu
pemerku: a = b =4,5931 A, ¢ =2,9592 A u snementapHoii siueiikoii. B pesynsrare pacueros (Bg = 1,27; R = 1,98; 1,
=2,68) yCTaHOBIICHO, YTO CTPYKTypa ucxoaHoro oopasma TiO, sisercs oqHo(a3HON, TeTparoHaIbHON 1 ONICHIBAETCS
MPOCTPaHCTBEHHOH rpymmoi P42/mnm. O6cy:xmenne. Takum 0Opa3oM, B paboTe IOKa3aHb! CTPYKTYpPHBIE MPEBPALCHHS
OKCH/JIOB IMPKOHMS ¥ TUTAHA MOJ ISHCTBUEM TaMMa-U3JTydeHHsI.

KanroueBnbie ci1oBa
HaHO-ZrO,, HaHO-TiO,, peHTreHoBcKas Audpakuus, KPUCTALINYECKas CTPYKTYpa, TaMMa-U3IIydeHUe
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Introduction

Nanometer-scale materials have recently attracted
considerable scientific attention because of their beneficial
high surface to volume ratio and therefore unique chemical,
electronic, and physical properties. In particular titanium
dioxide (TiO,) nanoparticles are in the focus of research
and thus many reports on electrical, optical, and structural
properties of TiO, nanoparticles can be found [1-7].
Most of the research reports on the structural properties
of nanoparticles dealt with the determination of structure
type, physical and different microstructural parameters.
X-ray diffraction line broadening studies give more
useful information about the physical parameters such
as crystallite size, dislocation density and strain [§—14].
TiO, is one of the most important materials having various
important applications, such as water and air purification,
self-cleaning materials and photovoltaic cells. TiO, is an
n-type semiconductor having a wide band gap (3.2 eV
for anatase and 3.0 eV for rutile). Deposition of thin films
of TiO, doped with Mn on F-doped SnO,-coated glass
by spin coating has been described. Deposition of thin
films of TiO, on various substrates by a simple sol-gel
dip coating technique has been proposed. It has various
photo-catalytic applications where it can be used in two
forms, i.e., as highly dispersed fine particles on porous
support materials and as suspended fluids in liquid medium.
Titanium (I'V) oxide is a white colored compound which
can be used as a coloring pigment in paints and a main
ingredient of cosmetics and toothpaste. It can be prepared
via reaction of titanium (IV) chloride with oxygen gas. It
can also find applications in photovoltaics, photocatalysis
and gas sensors. TiO, is a semiconductor oxide with
attractive photoactivity properties under UV irradiation
[15-20].

The two most studied forms of titania, rutile and anatase
are photoactive [21-26]. The gap of anatase is equal to
3.23 eV whereas the gap of rutile is equal to 3.02 eV
[27]. Anatase is known to be the most photoactive TiO,
polymorphic material, but, however, it is widely used as
pigments and fillers in polymer materials and coatings.
Nevertheless, mixtures of both phases showed particular
efficacy, for instance, the standard nano-powder P25,
from Degussa, is a mixture of 80 % anatase and 20 %
rutile [28-30]. This formulation limits the recombination
of charges due to the lower gap of rutile, however, their
photocatalytic activity depends on the compounds to be
degraded; the affinity of anatase in term of adsorption of
organic compounds and polymers with the particle surface
is one of the most important causes of the degradation
activity [31, 32]. Many reports have clarified that the
photocatalytic activity of TiO, strongly depends on its
physical properties, surface area, crystallinity, and surface
acidity, to name a few [33, 34]. The correlation between
the photocatalytic activity and the physical properties
of TiO, powders, such as crystal structure, surface area,
crystallite size, and surface hydroxyl groups for example,
has been accepted [35-37]. It is believed that the crystal
structure is one of the most basic properties used to predict
the photocatalytic activity; however, the main property
that plays an important role is also well-known to be the
surface area and the surface chemistry [38]. It has been well
accepted that surface area contact is an essential factor for
the effectiveness of the catalyst. Therefore, it is considered
essential to have a nano-powder, in this case, which will
have the smallest crystallite size in order to enhance the
surface area of contact and therefore the photocatalytic
activity [39-42].

Generally, the latter approach deserves a more attention
in the future because it might bring new information
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about the details of grain boundary evolution during the
sintering ceramic materials. The energetics of formation
and migration of the oxygen vacancy and interstitial in
cubic zirconium dioxide (ZrO,) are investigated by density
functional theory calculations. In an O-rich environment,
the negatively charged oxygen interstitial is the most
dominant defect, whereas the positively charged oxygen
vacancy is the most dominant defect under O-poor
conditions. Oxygen interstitial migration occurs by the
interstitially and the direct interstitial mechanisms, with
calculated migration energy barriers of 2.94 ¢V and
2.15 eV, respectively. Some novel activity and crystal
structure properties are observed and reported showing
the anatase polymorph to exhibit high thermodynamic
stability. For some nano-rutile particles photoactivity and
crystal size has an unusual limitation below 25 nm where
photoactivity decreases. This effect is confirmed from
both methyl orange dye fading kinetics and solid-state
analysis and weathering on doped isocyanate-acrylic paint
films.

In the study work, XRD pattern of nano-ZrO, and
nano-TiO, samples were taken before and after gamma
irradiation. Crystal structures of those samples were
studied.

Materials and method

As a research object, the nanoscale TiO, with a purity
0f 99.999 %, bulk density of 0.069 g/cm3, specific surface
area 70-90 m?/g, and particle size to 20-30 nm (Sigma—
Aldrich, Germany), the purity rate of nanoscale ZrO,
was 99.9 % (Sky Spring Nanomaterials, USA), d = 20—
30 nm, density p = 0.4-0.6 g/cm3 and special surface area
S =330 m?/g was used in this work. X-ray diffraction
studies were carried out on a Malvern Panalytical Empyrean
diffractometer. XRD data were recorded using a Malvern
Panalytical Empyrean analytical diffractometer with CuKa
radiation (A = 1.54 A). In this experiment, the accelerating
voltage of the radiation generator was set to 45 kV and the
emission current to 40 mA. X-ray diffraction patterns were
recorded in Bragg-Brentano beam geometry at 20 = 20°—
70° continuously at a scan rate of 0.43 degrees/min. The
resulting X-ray diffraction pattern was mainly determined
by the lattice strain (€), the intensity of the obtained peaks,
the corresponding syngony of the sample, the lattice size,
density, lattice constants, and the distance between the
phase groups. The lattice parameters are calculated based
on the square formulas of crystallography [15, 18, 29].
Irradiation of ZrO, and TiO, samples was carried out in
a gamma device with ¢°Co sources (£, = 1.25 MeV) at a
dose rate of 75 R/s, up to an exposure dose of 100 R.

Results and discussion

Nano-ZrO,. The X-ray diffraction data were processed
using the Fullprof program. The results of measurement
and processing of X-ray diffraction data are shown in Fig. 1
and Table 1.

Full-profile processing of ZrO, X-ray diffraction data
showed that the initial sample has a monoclinic structure
(space group P21/c) with the following lattice parameters:
a=5.1506 A, b=5.2080 A, c=5.3293 A and unit cell
(Table 1). Here, x, v, and z represent the size of the atoms.
As aresult of calculations (B = 1.78; Rp = 1.59; 4, = 2.71),
it was found that the structure of the original ZrO, sample
is single-phase, monoclinic, and is described by the space
group P21/c (Fig. 1, Intensity is in arbitrary units, a.u.).

The unit cell of the ZrO, monoclinic structure is shown
in Fig. 2 and Table 2.

4000

ity, a. u.

2000

Intens

26, °

Fig. 1. X-ray diffraction pattern of the original ZrO, sample:
I — experimental and calculated data; Il — Bragg reflections;
IIT — difference curve between experimental and calculated
data

Fig. 2. Crystal structure of ZrO, (monoclinic structures, space
group P21/c)

Table 1. X-ray diffraction data

Coordinates of atoms
Molecule Thermal factor B
x/a ylb zle
Zr 0.2763 0.0421 0.2096 0.4028
O, 0.0692 0.1662 0.8438 0.9572
0, 0.4493 0.7425 0.9786 0.5355
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Table 2. Properties of gamma-irradiated ZrO,

Sample 20, ° By,° D, nm & %1015, lines/m? €, %
Initial ZrO, 28.128 0.506 15.23 4.31 0.88
Gamma-irradiated ZrO, 28.134 0.513 15.02 4.43 0.89

Based on the obtained powder X-ray diffraction data,
the size of crystallites was determined using the Scherrer
formula.

b kA
~ Bscosd’

where D is the average crystallite size, & is the geometric
coefficient (0.9), A is the X-ray wavelength (1.5406 A),
B, is the diffraction reflection width at half maximum
(FWHM), and 0 is the diffraction angle.

The dislocation density was determined from the
equation:

d=1/D2.

4000

T
i

W

2000 ¢ i
100 s
0 pamtr Lot 1

10 30 50 70
26, °

1ty, a. u.

Intens

Fig. 3. X-ray pattern of an irradiated ZrO, sample:
I — experimental and calculated data; Il — Bragg reflections;
III — difference curve between experimental and calculated
data

The microstress value in ZrO, was calculated using the
Stokes-Wilson equation:

__B
4tan6’

€

Full-profile processing of X-ray diffraction analysis
of ZrO, after gamma irradiation showed a change in the
structure from the monoclinic (space group P21/c) phase
to the triclinic (space group P1). As a result (Fig. 3 and
Fig. 4) of calculations of the irradiated ZrO, sample, the
combination (Bg = 1.13; Rp = 2.52; 42 = 1.88) was found.

On the other hand, the electronic properties
investigations show that the displacement of oxygen atoms
for tetragonal structure leads to half of the zirconium—
oxygen bonds becoming stronger and the other half weaker

Fig. 4. Crystal structure of ZrO, (triclinic structures, space
group P1)
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Fig. 5.2D (a) and 3D (b) view of electron density maps of ZrO,
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when they are compared with the bonds in cubic zirconia.
According to the band structure calculations of different
zirconia phases, the cotunnite structure is supposed to be
better than the other ones as gate dielectric material (Fig. 5,
Density is in relative units, r.u.).

Nano-TiO,. The X-ray diffraction data were processed
using the Fullprof program. The results of measurement
and processing of X-ray diffraction data are shown in Fig. 6
and in Table 3.

Full-profile processing of TiO, X-ray diffraction data
showed that the sample has a tetragonal structure (space
group P42/mnm) with the following lattice parameters:
a=b=4.5931A, c=2.9592 A and unit cell (Table 3). As
a result of calculations (Bg = 1.27; Ry = 1.98; 32 =2.68),
it was found that the structure of the initial TiO, sample
is single-phase, tetragonal, and is described by the space
group P42/mnm (Table 4). The elementary cell of the
tetragonal TiO, structure is shown in Fig. 7.

Full-profile processing of X-ray diffraction data of
TiO, after gamma irradiation (Fig. 8) shows that the lattice
parameters increase: @ = b = 4.5946 A, ¢ =2.9609 A and
tetragonal showed that it has a structure (space group
P42/mnm) and unit cell (Table 5) as a result of calculations
of the irradiated TiO, sample (Bg = 1.09; Rg = 2.67;
1= 1.77).

lonizing radiation is often more energetic than non-
ionizing radiation and, as a result, is more likely to induce
electronic transitions of atoms and molecules. In electronic
excitation, an electron absorbing the radiation transits into
a higher electronic state becoming less bounded to the
nucleus and therefore more reactive. If the radiation has
sufficient energy, the electron can escape the coulomb
attraction of the nucleus, and the molecule is ionized. In

. 2000
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I al ¢ B SAINE (Saabin
. o o on o
0 —— ~ — =
-

L e

20 40 60 80
20, ©

Fig. 6. X-ray diffraction pattern of the original TiO, sample.
I — experimental and calculated data; II — Bragg reflections;
Il — difference curve between experimental and calculated
data

Table 3. X-ray diftraction data

Fig. 7. Crystal structure of TiO, (tetragonal structure space
group P42/mnm)

Table 4. Properties of gamma-irradiated TiO,

Impact external physical Initial | Gamma radiation x106, Gy
parameters

D, nm 0.68 0.33

o x 1014, m2 0.02 0.09

contrast, molecules undergoing rotational or vibrational
transitions experience minimal changes in the stability
of the electron-nucleus attraction, resulting in negligible
chemical effects. Therefore, the scientific component of the
article is of interest because it touches upon the issues of
structural transformations of zirconium oxide and titanium
under the action of gamma radiation.

s
. 2000 L i
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26, °

Fig. 8. X-ray pattern of an irradiated TiO, sample:
I — experimental and calculated data; Il — Bragg reflections;
11 — difference curve between experimental and calculated
data

Table 5. X-ray diffraction data of the irradiated TiO, sample

Coordinates of atoms Thermal Coordinates of atoms Thermal
Molecule Molecule
x/a yib zlc factor B xla yib zle factor B
Ti 0.00000 0.00000 0.50000 0.15676 Ti 0.00000 0.00000 0.50000 0.36946
0, 0.19568 0.80432 0.00000 0.16562 0, 0.19568 0.80432 0.00000 0.24743
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Conclusion

The study full-profile processing of ZrO, X-ray
diffraction data showed that the initial sample has a
monoclinic structure (space group P21/c) with the
following lattice parameters: a = 5.1506 A, b = 5.2080 A,
c=5.3293 A. X-ray diffraction analysis of ZrO, after
gamma irradiation showed a change in the structure
from the monoclinic (space group P21/c) phase to the
triclinic (space group P1). As a result of calculations of
the irradiated ZrO, sample, the combination (B = 1.13;
Ry =2.52; ¥2 = 1.88) was found. Full-profile processing
of TiO, X-ray diffraction data showed that the sample
has a tetragonal structure (space group P42/mnm) with
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