
Научно-технический вестник информационных технологий, механики и оптики, 2024, том 24, № 2
222 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 2

	 НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

	 март–апрель 2024	 Том 24 № 2	 http://ntv.ifmo.ru/

	 SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS

	 March–April 2024	 Vol. 24 No 2 	 http://ntv.ifmo.ru/en/

	 ISSN 2226-1494 (print)		 ISSN 2500-0373 (online)

март–апрель 2024  Том 24 Номер 2

© Aliyu Aihong A., Imam Ya’u B., Ali U., Ahmad A., Abdulrahman Lawal M., 2024

сентябрь–октябрь 2023  Том 23 Номер 5

doi: 10.17586/2226-1494-2024-24-2-222-229

An optimized deep learning method for software defect prediction using
Whale Optimization Algorithm

Anes Aliyu Aihong1, Badamasi Imam Ya’u2, Usman Ali3,
Abuzairu Ahmad4, Mustapha Abdulrahman Lawal5

1,2,4,5 Abubakar Tafawa Balewa University (ATBU), Bauchi, 740272, Nigeria
3 Federal College of Education (Technical), Gomber, 760101, Nigeria
1 Anesaliyu123@gmail.com, https://orcid.org/0009-0009-5169-7593
2 biyau@atbu.edu.ng, https://orcid.org/0000-0002-2710-8973
3 usmanali@fcetgombe.edu.ng, https://orcid.org/0000-0001-9645-3642
4 Abuzairuahmad2020@gmail.com, https://orcid.org/0000-0003-0229-739X
5 musbaida@gmail.com, https://orcid.org/0000-0002-1037-2022

Abstract
The goal of this study is to predict a software error using Long Short-Term Memory (LSTM). The suggested system is
an LSTM taught using the Whale Optimization Algorithm to save training time while improving deep learning model
efficacy and detection rate. MATLAB 2022a was used to develop the enhanced LSTM model. The study relied on 19
open-source software defect databases. These faulty datasets were obtained from the tera-PROMISE data collection.
However, in order to evaluate the model performance to other traditional approaches, the scope of this study is limited
to five (5) of the most highly ranked benchmark datasets (DO1, DO2, DO3, DO4, and DO5). The experimental results
reveal that the quality of the training and testing data has a significant impact on fault prediction accuracy. As a result,
when we look at the DO1 to DO5 datasets, we can see that prediction accuracy is significantly dependent on training
and testing data. Furthermore, for DO2 datasets, the three deep learning algorithms tested in this study had the highest
accuracy. The proposed method, however, outperformed Li’s and Nevendra’s two classical Convolutional Neural
Network algorithms which attained accuracy of 0.922 and 0.942 on the DO2 software defect data, respectively.
Keywords
deep learning, software defect prediction, whale optimization algorithms, long short-term memory, machine learning,
optimization algorithm
Acknowledgements
This study is funded by the Abubakar Tafawa Balewa University (ATBU) in Bauchi, Nigeria.
For citation: Aliyu Aihong A., Imam Ya’u B., Ali U., Ahmad A., Abdulrahman Lawal M. An optimized deep learning
method for software defect prediction using Whale Optimization Algorithm. Scientific and Technical Journal of Information
Technologies, Mechanics and Optics, 2024, vol. 24, no. 2, pp. 222-229. doi: 10.17586/2226-1494-2024-24-2-222-229

УДК 004.85
Оптимизированный метод глубокого обучения

для прогнозирования дефектов программного обеспечения
с использованием алгоритма оптимизации кита

Анес Алию Айхонг1, Бадамаси Имам Яу2, Усман Али3, Абузайру Ахмад4,
Мустафа Абдулрахман Лаваль5

1,2,4,5 Университет Абубакара Тафавы Балева (ATBU), Баучи, 740272, Нигерия
3 Федеральный педагогический колледж (технический), Гомбе, 760101, Нигерия
1 Anesaliyu123@gmail.com, https://orcid.org/0009-0009-5169-7593
2 biyau@atbu.edu.ng, https://orcid.org/0000-0002-2710-8973
3 usmanali@fcetgombe.edu.ng, https://orcid.org/0000-0001-9645-3642
4 Abuzairuahmad2020@gmail.com, https://orcid.org/0000-0003-0229-739X
5 musbaida@gmail.com, https://orcid.org/0000-0002-1037-2022

http://ntv.ifmo.ru/
http://ntv.ifmo.ru/en/
mailto:Anesaliyu123@gmail.com
https://orcid.org/0009-0009-5169-7593
mailto:biyau@atbu.edu.ng
https://orcid.org/0000-0002-2710-8973
mailto:usmanali@fcetgombe.edu.ng
https://orcid.org/0000-0001-9645-3642
mailto:Abuzairuahmad2020@gmail.com
https://orcid.org/0000-0003-0229-739X
mailto:musbaida@gmail.com
https://orcid.org/0000-0002-1037-2022
mailto:Anesaliyu123@gmail.com
https://orcid.org/0009-0009-5169-7593
mailto:biyau@atbu.edu.ng
https://orcid.org/0000-0002-2710-8973
mailto:usmanali@fcetgombe.edu.ng
https://orcid.org/0000-0001-9645-3642
mailto:Abuzairuahmad2020@gmail.com
https://orcid.org/0000-0003-0229-739X
mailto:musbaida@gmail.com
https://orcid.org/0000-0002-1037-2022

Научно-технический вестник информационных технологий, механики и оптики, 2024, том 24, № 2
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 2� 223

Аннотация
Целью исследования является прогнозирование ошибки программного обеспечения с использованием
долговременной кратковременной памяти (Long Short-Term Memory, LSTM). Предлагаемая система представляет
собой LSTM, обучаемую с использованием алгоритма оптимизации китов (Whale Optimization Algorithm).
Система обеспечивает экономию времени обучения. Одновременно повышается эффективность модели глубокого
обучения (DL) и скорость обнаружения. Для разработки расширенной модели LSTM применен программный
пакет MATLAB 2022a. Использованы 19 баз данных дефектов программного обеспечения с открытым исходным
кодом. Ошибочные наборы данных получены из коллекции tera-PROMISE. Для оценки эффективности модели
по сравнению с другими традиционными подходами объем исследования ограничен пятью наборами эталонных
данных с наиболее высоким рейтингом (DO1, DO2, DO3, DO4 и DO5). Результаты экспериментов показали,
что качество данных обучения и тестирования оказывает существенное влияние на точность прогнозирования
ошибок. При анализе на наборах данных от DO1 до DO5 видно, что точность прогнозирования существенно
зависит от результатов обучения и тестирования. Три алгоритма DL, протестированные на наборе данных DO2,
показали самую высокую точность (0,942) в сравнении с двумя классическими алгоритмами с использованием
сверточной нейронной сети Li’s и Nevendra’s (0,922).
Ключевые слова
глубокое обучение, SDP, прогнозирование дефектов программного обеспечения, WOA, алгоритмы оптимизации
китов, LSTM, долговременная память, машинное обучение, алгоритм оптимизации
Благодарности
Исследование финансируется Университетом Абубакара Тафавы Балева (ATBU) в Баучи, Нигери я.
Ссылка для цитирования: Алию Айхонг А., Имам Яу Б., Али У., Ахмад А., Абдулрахман Лаваль М.
Оптимизированный метод глубокого обучения для прогнозирования дефектов программного обеспечения с
использованием алгоритма оптимизации кита // Научно-технический вестник информационных технологий,
механики и оптики. 2024. Т. 24, № 2. С. 222–229 (на англ. яз.). doi: 10.17586/2226-1494-2024-24-2-222-229

Introduction

Long Short-Term Memory (LSTM) are recurrent
neural networks which are frequ ently used to model
sequential data such as time series or natural language
[1]. The Convolutional Neural Network (CNN) are built
neural networks [2], and they are mostly used for image
recognition and categorization [1]. Whale Optimization
Algorithm (WOA) is a novel optimization technique
for tackling optimization issues [3]. Recurrent Neural
Network (RNN) is a sort of artificial neural network that
processes data sequences [4]. Software Defect Prediction
(SDP) goal is to detect problematic modules in order
to allocate testing resources more effectively, which is
an economically significant activity in software quality
assurance [5].

Review of Related Literature
Software faults frequently result in incorrect or

unexpected outputs and unpleasant actions [6]. We
concentrated on models that outperform a randomly
selected defective class of greater than 80 % accuracy [7].
The prediction of software mistakes is crucial to delivering
the required software quality on a software project. Despite
the fact that Machine Learning (ML), particularly Deep
Learning (DL), has been advocated for forecasting software
problems, both suffer from insufficient accuracy, over
fitting, and complicated structure [8].

Statement of the Problem
The increasing quantity of software faults degrades its

quality and reliability [9]. Defect detection is becoming
increasingly critical, and present detection approaches
might be improved significantly. Creating a critical SDP
model on high-dimensional and restricted data remains
a difficult task. Thus, the current study in [10] provides
a strategy for detecting problematic modules in software
using modified CNNs. However, because network
training was slow, training time needed to be reduced and

accelerated. Also, as indicated by the author [10], more
robust DL algorithms can be investigated to improve
the prediction accuracy of SDP. As a result, this study
investigates the possibilities of the WOA-based LSTM
algorithm in the construction of a more efficient prediction
framework. According to the authors’ knowledge, this is the
first time an LSTM model has been adjusted with WOA to
improve the SDP method efficacy.

Aim and objectives
The goal of this research is to create a more efficient

and optimal DL model for SDP. This research has the
following objectives to:
—	 Develop an efficient LSTM-based WOA model for

SDP.
—	 Accelerate the network training time of the proposed

model.
—	 Enhance the suggested model overall prediction

performance in terms of detection rate.
—	 Evaluate the proposed model accuracy, precision, recall,

and F1.

Methodology

The primary purpose of this research is to outperform
the current system by employing the WOA to train an
LSTM for SDP. As a result, this part analyzes and discusses
the existing framework flaws, as well as the suggested
system, data collection, implementation, and assessment
metrics.

Fig. 1 depicts the overall workflow of the proposed
approach. The improved LSTM-based WOA model
developed here was used to predict flaws in software
projects. This method involves two stages: model creation
and prediction. The WOA is used to train the LSTM model
in order to reduce the training time of the DL model.
Because of its higher accuracy, LSTM is preferred over
CNN for processing time series data.

A. Aliyu Aihong, B. Imam Ya’u, U. Ali, A. Ahmad, M. Abdulrahman Lawal

An optimized deep learning method for software defect prediction using Whale Optimization Algorithm

Научно-технический вестник информационных технологий, механики и оптики, 2024, том 24, № 2
224 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 2

Long Short-Term Memory
LSTM is more accurate than traditional RNNs [11].

It was first proposed in [12]. Memory blocks, as opposed
to RNN, are discrete units found in the LSTM recurrent
hidden layer [11]. Memory blocks are made up of memory
cells with self-connections that record the network temporal
state as well as specific multiplicative units called gates that
regulate information flow. In the original architecture, each
memory block featured three distinct gate types: an input
gate, an output gate, and a forget gate [11].

Whale Optimization Algorithm
The WOA makes use of a population of search agents

tasked with locating the best global solution to optimization
problems. Like alternative population-based algorithms,
the search process starts with the generation of a set of
randomly generated solutions (candidate solutions) for a
given problem [3]. WOA is distinguished from different
algorithms by rules that enhance the candidate solutions
at every stage of optimization. In reality, WOA imitates
the hunting behavior of humpback whales by locating and
attacking prey using a technique known as “bubble-net”
feeding. LSTM optimization for shorter training durations
is a critical problem, particularly when working with
large datasets and complex models [3]. As a result, the
WOA was used in this study to accelerate the training of
LSTM networks, as one of our key goals is to investigate
the computing time of the algorithms as a measure for
evaluating the model quality.

Dataset Description

This study gathered information from an article
published in [10]; many journals and websites were
consulted during the data collection procedure. The
University of California Irvine (UCI) ML repository is
a highly important site for collecting open source and
free datasets for ML1. The researcher used 19 open-

1 Sayyad Shirabad J. and Menzies T.J. PROMISE Repository
of Software Engineering Databases, School of Information
Technology and Engineering, University of Ottawa, Canada.

source software defect datasets to estimate the prediction
abilities of the proposed LSTM base WOA model. These
problematic datasets were obtained from the tera-PROMISE
data collection. The scope of this study, however, is limited
to five of the best ranking benchmark datasets in order to
compare the model performance to that of other traditional
approaches. The PROMISE repository was inspired by
the UCI ML repository1. The datasets were read as XLS
file and were divided into 80 % for training and 20 %
for testing in order to develop a model. The dataset was
pre-processed by carrying out data cleaning/scrubbing to
remove typographical errors and inconsistencies in the
data. We then saved the dataset in the format required by
MATLAB through data formatting phase.

Table 1 shows the statistics of utilized datasets. Column
one shows the dataset ID (D.ID), column two shows the
dataset name, column three shows the line of code, and
column four show the number of instances and defects. The
line of code (LOC) it was also introduced.

Table 2 lists the characteristics of the dataset. Columns 1
and 3 include the feature Ids (F.ID), while columns 2 and 4
provide the features name for all datasets.

To obtain the desired result, the input size was set to
5, the number of hidden units to 200, and the number of
classes to 3. These parameters are described as follows:
—	 The series Input Layer function takes an argument

called Input Size. It is the feature dimension, or the
number of rows in the matrix in each cell.

—	 Num Hidden Units is an LSTM Layer function
parameter that specifies the number of hidden units in
the LSTM network.

—	 The argument of completely Connected Layer is the
number of labels which is the number of wolves to be
identified in this study.
Table 3 shows the parameters settings for the proposed

algorithm. In this work, the LSTM layer is used to analyze
the sequence both forward and backward. The XLS file
was opened. With a total of 600 iterations, the number of

2005. Available at: http://promise.site.uottawa.ca/SERepository
(accessed: 09.02.2024).

Fig. 1. Workflow of the proposed model

http://D.ID
http://F.ID
http://promise.site.uottawa.ca/SERepository

Научно-технический вестник информационных технологий, механики и оптики, 2024, том 24, № 2
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 2� 225

A. Aliyu Aihong, B. Imam Ya’u, U. Ali, A. Ahmad, M. Abdulrahman Lawal

search agents was limited to 40. The details of the chosen
benchmark function were loaded.

Table 4 defined all the layers of the network. We specify
the classifier’ training options. Set Max Epochs to 7, and
the network will iteratively run over the training data seven
times. We chose a batch size of 27 to allow the network to
evaluate 13 training signals at the same time. Plots can be
set to “training-progress” to show training progress as the
number of iterations grows. We set verbose to false to avoid
producing the table output that matches the data given in
the visual. We use the same mini-batch size as for training
to categorize the test data, which is then used to determine
the prediction accuracy. The WOA strategy is used in this

study to maximize the network optimal weight by searching
through the identified agents as indicated during design.

Evaluation Parameters and Performance Metrics

Following implementation, the suggested system will
be evaluated based on its performance. The performance
parameters for this work include accuracy, convergence
speed, and precision score. These parameters are computed
mathematically as follows:

Accuracy: This performance metric is concerned with
the model correct prediction, and it may be stated as:

	 Accuracy = .

Precision: Precisions tell you how exact or accurate
your model is in terms of anticipated positives and how
many of them are true positives. When the cost of false
positives is substantial, precision is a good metric to use. It
can be stated numerically as:

	 Precision = .

Table 1. Statistics of Dataset

D.ID Datasets LOC Instance/Defect

D01 log4j-1.0 21,549 135 / 34
D02 log4j-1.2 38,191 205 / 189
D03 lucene-2.0 50,596 195 / 91
D04 lucene-2.2 63,571 247 / 144
D05 lucene-2.4 102,859 340 / 203
D06 poi-1.5 55,428 237 / 141
D07 poi-2.0 93,171 314 / 37
D08 poi-2.5 119,731 385 / 248
D09 poi-3.0 129,327 442 / 281
D10 synapse-1.0 159,254 440 / 71
D11 synapse-1.1 42,302 222 / 60
D12 synapse-1.2 53,500 256 / 86
D13 velocity-1.4 51,713 196 / 147
D14 velocity-1.6 57,012 229 / 78
D15 xalan-2.4 225,088 723 / 110
D16 xalan-2.5 304,860 803 / 387
D17 xalan-2.6 411,737 885 / 411
D18 xerces-1.2 159,254 440 / 71
D19 xerces-1.3 167,095 453 / 69
— Total 2,306,238 7,147 / 2,858

Table 2. Features in the datasets

F.ID Features name F.ID Features name

1 wmc 11 moa
2 dit 12 mfa
3 noc 13 cam
4 cbo 14 ic
5 rfc 15 cbm
6 lcom 16 amc
7 lcom3 17 ca
8 npm 18 ce
9 loc 19 max_cc
10 dam 20 avg_cc

Table 3. Parameters Settings for the proposed algorithm

Parameter Settings

Sequence Input Layer 4
LSTM Layer 100
Fully Connected Layer 2
SoftMax Layer 1
Classification Layer 1
Max Epochs 7
Mini Batch Size 27
Verbose False
Learn Rate Schedule Piecewise
Maximum Iterations 600
input Size 5
Num Hidden Units 200
Num Classes 2

Table 4. Parameter Settings

Parameter Setting

Layer of Sequence Input Input size
The LSTM Layer 2
Layer Completely Connected 1
Softmax Layer 1
Classification Layer 1
Max Epochs 7
Mini Batch Size 27
Gradient Threshold 1
Verbose False
Execution Environment CPU

An optimized deep learning method for software defect prediction using Whale Optimization Algorithm

Научно-технический вестник информационных технологий, механики и оптики, 2024, том 24, № 2
226 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 2

Recall: Recall seeks to determine what percentage
of true positives was accurately detected. It is written
mathematically as:

	 Recall = .

F1: is a function of accuracy and recall; it may be
more appropriate to use when we want to strike a balance
between precision and memory and there is an even class
distribution (a high number of genuine negatives). It can be
stated numerically as:

	 F1 = 2 .

Where TP (True Positive) shows whether instances
where the actual class of the data point was 1 (true) and the
projected class was also 1 (true)?

TN (True Negative) shows whether instances where the
actual class of the data point was 0 (false) and the projected
class was also 0 (false)?

FP (False Positive) shows whether instances where the
actual class of the data point was 0 (false) and the expected
class was 1 (true)?

FN (False Negative) shows whether instances when the
actual class of the data point was 1 (true) and the predicted
class was 0 (false)?

Result and Discussion

We use a static analysis-based evaluation sub-module
to benchmark the DL architectures. On publicly available
datasets containing collected samples, the performance
of numerous traditional ML and DL methods for SDP is
studied. In this part, the proposed methodologies were
tested against the most extensively used software defect
classification approach (CNN) on benchmark datasets.
Precision, recall, accuracy, and F1 were all recorded for
each one. The study was carried out on a system powered
by an Intel Core i7 processor. The simulation output is
evaluated and compared in three stages, beginning with
accuracy and progressing to training performance.

From Table 5, each of the evaluation metrics (accuracy,
precision, recall and F1) was reported between 0 and
100. In each case, the higher is the value the better is the
model performance. It is quite obvious that the proposed
system achieved the best performance in terms of accuracy,
precision, recall and F1.

Classification Accuracy
The three DL algorithms used in this study had the highest

accuracy. In addition, the suggested system produced a
higher classification accuracy of 0.975 on the DO2 software
defect data than the other classical CNN systems utilized by
[6] and [10], which reached 0.922 and 0.942, respectively.
This means that the suggested model outperformed the
most recent DL approach in accurately predicting the
presence of faults. Fig. 2 compares the suggested model
performance to that of the existing CNN approach.

Precision
On the DO2 software defect data, the suggested

system achieved the highest precision score of 0.968 when
compared to the other classical CNN algorithms utilized by
[6] and [10], which achieved accuracy of 0.952 and 0.902,
respectively.

From the Fig. 3, we can see that the proposed system
achieved the best precision score of 0.968 on the DO2
software defect data compare to the other classical CNN
approaches used by [6] and [10] which achieved accuracy
of 0.952 and 0.902, respectively.

Recall
The suggested method had the highest precision score

of 0.989 on the DO2 software defect data when compared
to the other classical CNN systems utilized by [6] and [10]
which had accuracy of 0.962 and 0.910, respectively.
However, precision and recall are sometimes merged into a
single statistic known as the F1 which strikes a compromise
between the two.

As seen from the Fig. 1, the proposed system achieved
the best precision score of 0.989 on the DO2 software
defect data compare to the other classical CNN approaches

Table 5. Performance comparison with classical CNN architectures on the same dataset

Data
Li’s CNN Nevendra’s CNN Proposed WOA-LSTM

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

D01 0.682 0.623 0.533 0.574 0.748 0.756 0.778 0.767 0.942 0.951 0.936 0.923
D02 0.922 0.902 0.910 0.906 0.942 0.952 0.962 0.957 0.975 0.968 0.989 0.978
D03 0.468 0.528 0.570 0.548 0.628 0.638 0.646 0.642 0.969 0.927 0.932 0.930
D04 0.583 0.573 0.568 0.570 0.618 0.658 0.648 0.653 0.931 0.941 0.936 0.925
D05 0.597 0.586 0.592 0.589 0.697 0.721 0.732 0.726 0.903 0.974 0.932 0.926
Average 0.666 0.664 0.670 0.666 0.775 0.782 0.790 0.786 0.934 0.952 0.935 0.926

Fig. 2. Classification accuracy for all methods

Научно-технический вестник информационных технологий, механики и оптики, 2024, том 24, № 2
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 2� 227

A. Aliyu Aihong, B. Imam Ya’u, U. Ali, A. Ahmad, M. Abdulrahman Lawal

used by [6] and [10] which achieved accuracy of 0.962 and
0.910, respectively.

F1
On the DO2 software defect data, the suggested system

achieved the highest F1 of 0.978 when compared to the
other classical CNN systems utilized by [6] and [10], which
achieved 0.957 and 0.906, respectively.

From Fig. 5, the proposed system achieved the best F1
of 0.978 on the DO2 software defect data compare to the
other classical CNN approaches used by [6] and [10] which
achieved accuracy of 0.957 and 0.906, respectively.

In general, it can be clearly noticed that our proposed
method (WOA-LSTM in Fig. 6) achieved the highest
accuracy with 0.934, precision 0.952, recall 0.935, and
F1 with 0.926, irrespective of the software defect datasets
used. Compared to the existing CNN in [6], which achieved

the values: accuracy 0.666, precision 0.664, recall 0.67, and
F1 0.666 (Li’s CNN in Fig. 6); and existing CNN in [10]
which achieved the values: accuracy 0.775, precision 0.782,
recall 0.79, and F1 0.786 (Nevendra’s CNN in Fig. 6).

Computational Complexity

The recommended model, WOA-LSTM, achieved the
fastest run time of 112 s, beating 195 s in [6], and CNN
203 s in [10]. This means that the proposed technique
significantly accelerated network training while also
providing a more efficient DL model for early detection
of software flaws. After ten separate runs, the average
performance for the scenario of algorithm execution time is
shown. The testing of the three techniques on DO2 software
data is depicted in Fig. 7.

Discussion

This study presents an optimized DL technique,
specifically the LSTM employing WOA, to improve the
prediction performance of software problems.

Limitation
The research was limited to a simulation technique

and did not cover model upgrades, integration with
development tools, or developer cooperation. As a result,
real-world deployment must be thoroughly investigated.
Future research will look into the practical issues of
deploying LSTM-based defect prediction models in real-
world software development environments. Researchers
might focus on making LSTM models more interpretable
in the future, allowing developers and testers to understand
why particular predictions are generated. The research
relied on limited or specific datasets, which may have
resulted in a lack of diversity in terms of software projects,

Fig. 3. Precision for all methods

Fig. 4. Recall for all method

Fig. 5. F1 for all methods

Fig. 6. Average performance score for all methods

Fig. 7. Average converging time for all algorithms

An optimized deep learning method for software defect prediction using Whale Optimization Algorithm

Научно-технический вестник информационных технологий, механики и оптики, 2024, том 24, № 2
228 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 2

programming languages, or sectors. This shortcoming may
limit the suggested method applicability to numerous real-
world settings. The study may have drawbacks due to the
proposed method sensitivity to hyper parameters or specific
setups. It may be necessary to investigate the method
resilience in relation to different parameter values further.

The st udy provided an optimized DL methodology
based on the WOA; however, it did not provide a full
comparison to other state-of-the-art defect prediction
models or approaches. The proposed method computing
requirements may be a limitation. Future research could
look at combining the proposed improved DL method with
ensemble techniques. It would be possible to investigate
how integrating various models could improve defect
prediction accuracy and robustness. Future research should
look on ways to make the model decisions more visible
and intelligible, allowing software programmers to better
grasp the reasoning behind defect predictions. An area of
interest could be the development of a real-time defect
prediction framework based on the optimal DL algorithm.
LSTM could be used in SDP research to detect, mitigate,
and assure fairness and ethical issues.

Recommendation
It is recommended in the future to look at transfer

learning approaches that allow pretrained LSTM models
(for example, on one project or domain) to be fine-tuned
for defect prediction on various projects or domains. This
may eliminate the requirement for large labeled datasets
for each project. In the future, we should address the issue
of imbalanced datasets in software prediction. Imbalanced
datasets are widespread in this domain; therefore, research
into how to employ LSTM networks successfully for
such datasets is critical. This research also recommends
investigating in the future how LSTM models may capture
and use time-related features of software development.
Understanding how historical data affects future defect
prediction might be useful as software projects change
over time. We also recommend in the future looking into
incorporating diverse data modalities (for example, source

code, bug reports, and version history) into LSTM-based
models for defect prediction. Combining data from many
sources has the potential to improve prediction accuracy.

Creating methods for estimating the uncertainty or
confidence associated with LSTM-based predictions.
Understanding when the model is uncertain might be
essential for making decisions. The research also strongly
recommends investigating ways to adapt LSTM models to
changing software projects. In actuality, software projects
grow, and models should be able to react to new data
without retraining extensively. Look into approaches for
protecting sensitive software data while utilizing LSTM
models for fault prediction. It is critical to follow data
protection regulations. Conduct comparative studies
that compare LSTM-based approaches to other ML and
classical defect prediction techniques in order to better
understand the strengths and drawbacks of LSTM in
various contexts. Investigate how LSTM models can
be integrated into human-in-the-loop defect prediction
systems, which combine machine predictions with human
expertise.

Conclusion

The suggested system is an LSTM taught with the
WOA to reduce training time while improving DL model
efficacy and detection rate. In general, we can conclude that
the suggested model runs in less than 2 minutes on the DO2
datasets. CNN was revealed to be the most sluggish [10]
of all the algorithms tested. The WOA successfully limits
premature convergence toward local optima and establishes
the appropriate values for the LSTM weights and biases,
which accounts for the technique’s success. The results
demonstrated that the WOA can increase convergence
speed. The basic mechanism that helped this algorithm
avoid the multiple local solutions to the difficulty of
training DL algorithms was the random selection of prey in
each selection. The property is inherited by the WOA-based
trainer, which outperforms all classical CNN algorithms.

References
1.	 Wunsch A., Liesch T., Broda S. Groundwater level forecasting with

artificial neural networks: a comparison of long short-term memory
(LSTM), convolutional neural networks (CNNs), and non-linear
autoregressive networks with exogenous input (NARX). Hydrology
and Earth System Sciences, 2021, vol. 25, no. 3, pp. 1671–1687.
https://doi.org/10.5194/hess-25-1671-2021

2.	 Conneau A., Schwenk H., Barrault L., Lecun Y. Very deep
convolutional networks for text classification. Proc. of the 15th
Conference of the European Chapter of the Association for
Computational Linguistics: Vol. 1, Long Papers, 2017, pp. 1107–
1116. https://doi.org/10.18653/v1/e17-1104

3.	 Aljarah I., Faris H., Mirjalili S. Optimizing connection weights in
neural networks using the whale optimization algorithm. Soft
Computing, 2018, vol. 22, no. 1, pp. 1–15. https://doi.org/10.1007/
s00500-016-2442-1

4.	 Lipton Z.C., Berkowitz J., Elkan Ch. A critical review of recurrent
neural networks for sequence learning. arXiv , 2015,
arXiv:1506.00019. https://doi.org/10.48550/arXiv.1506.00019

5.	 Xu Z., Li S., Xu J., Liu J., Luo X., Zhang Y., Zhang T., Keung J.,
Tang Y. LDFR: Learning deep feature representation for software
defect prediction. Journal of Systems and Software, 2019, vol. 158,
pp. 110402. https://doi.org/10.1016/j.jss.2019.110402

Литература
1.	 Wunsch A., Liesch T., Broda S. Groundwater level forecasting with

artificial neural networks: a comparison of long short-term memory
(LSTM), convolutional neural networks (CNNs), and non-linear
autoregressive networks with exogenous input (NARX) // Hydrology
and Earth System Sciences. 2021. V. 25. N 3. P. 1671–1687. https://
doi.org/10.5194/hess-25-1671-2021

2.	 Conneau A., Schwenk H., Barrault L., Lecun Y. Very deep
convolutional networks for text classification // Proc. of the 15th
Conference of the European Chapter of the Association for
Computational Linguistics: Vol. 1, Long Papers, 2017. P. 1107–1116.
https://doi.org/10.18653/v1/e17-1104

3.	 Aljarah I., Faris H., Mirjalili S. Optimizing connection weights in
neural networks using the whale optimization algorithm // Soft
Computing. 2018. V. 22. N 1. P. 1–15. https://doi.org/10.1007/s00500-
016-2442-1

4.	 Lipton Z.C., Berkowitz J., Elkan Ch. A critical review of recurrent
neural networks for sequence learning // arXiv. 2015.
arXiv:1506.00019. https://doi.org/10.48550/arXiv.1506.00019

5.	 Xu Z., Li S., Xu J., Liu J., Luo X., Zhang Y., Zhang T., Keung J.,
Tang Y. LDFR: Learning deep feature representation for software
defect prediction // Journal of Systems and Software. 2019. V. 158.
P. 110402. https://doi.org/10.1016/j.jss.2019.110402

https://doi.org/10.5194/hess-25-1671-2021
https://doi.org/10.18653/v1/e17-1104
https://doi.org/10.1007/s00500-016-2442-1
https://doi.org/10.1007/s00500-016-2442-1
https://doi.org/10.48550/arXiv.1506.00019
https://doi.org/10.1016/j.jss.2019.110402
https://doi.org/10.5194/hess-25-1671-2021
https://doi.org/10.5194/hess-25-1671-2021
https://doi.org/10.18653/v1/e17-1104
https://doi.org/10.1007/s00500-016-2442-1
https://doi.org/10.1007/s00500-016-2442-1
https://doi.org/10.48550/arXiv.1506.00019
https://doi.org/10.1016/j.jss.2019.110402

Научно-технический вестник информационных технологий, механики и оптики, 2024, том 24, № 2
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 2� 229

A. Aliyu Aihong, B. Imam Ya’u, U. Ali, A. Ahmad, M. Abdulrahman Lawal

6.	 Li Z., Jing X.Y., Zhu X. Progress on approaches to software defect
prediction. IET Software, 2018, vol. 12, no. 3, pp. 161–175. https://
doi.org/10.1049/iet-sen.2017.0148

7.	 Dos Santos G.E., Figueiredo E. Failure of one, fall of many: An
exploratory study of software features for defect prediction. Proc. of
the IEEE 20th International Working Conference on Source Code
Analysis and Manipulation (SCAM), 2020, pp. 98–109. https://doi.
org/10.1109/SCAM51674.2020.00016

8.	 Zain Z.M., Sakri S., Ismail N.H.A., Parizi R.M. Software defect
prediction harnessing on multi 1-dimensional convolutional neural
network structure. Computers, Materials and Continua, 2022, vol. 71,
no. 1, pp. 1521. https://doi.org/10.32604/cmc.2022.022085

9.	 Chen L., Fang B., Shang Z., Tang Y. Tackling class overlap and
imbalance problems in software defect prediction. Software Quality
Journal, 2018, vol. 26, no. 1, pp. 97–125. https://doi.org/10.1007/
s11219-016-9342-6

10.	 Nevendra M., Singh P. Software defect prediction using deep learning.
Acta Polytechnica Hungarica, 2021, vol. 18, no. 10, pp. 173–189.
https://doi.org/10.12700/aph.18.10.2021.10.9

11.	 Ahmad A., Musa K.I., Zambuk F.U., Lawal M.A. Optimizing
connection weights in a Long Short-Term Memory (LSTM) using
Whale Optimization Algorithm (WOA): A review. Journal of Science,
Technology and Education, 2022, vol. 10, no. 3, pp. 362–373.

12.	 Hochreiter S., Schmidhuber J. Long short-term memory. Neural
computation, 1997, vol. 9, no. 8, pp. 1735–1780. https://doi.
org/10.1162/neco.1997.9.8.1735

Authors
Anes Aliyu Aihong — BSc, Abubakar Tafawa Balewa University
(ATBU), Bauchi, 740272, Nigeria, https://orcid.org/0009-0009-5169-
7593, Anesaliyu123@gmail.com
Badamasi Imam Ya’u — PhD, Senior Lecturer, Abubakar Tafawa Balewa
University (ATBU), Bauchi, 740272, Nigeria, https://orcid.org/0000-0002-
2710-8973, biyau@atbu.edu.ng
Usman Ali — PhD, Lecturer, Federal College of Education (Technical),
Gomber, 760101, Nigeria, https://orcid.org/0000-0001-9645-3642,
usmanali@fcetgombe.edu.ng
Abuzairu Ahmad — MSc, Abubakar Tafawa Balewa University (ATBU),
Bauchi, 740272, Nigeria, https://orcid.org/0000-0003-0229-739X,
Abuzairuahmad2020@gmail.com
Mustapha Abdulrahman Lawal — PhD, Principal Scientist, Abubakar
Tafawa Balewa University (ATBU), Bauchi, 740272, Nigeria, https://
orcid.org/0000-0002-1037-2022, musbaida@gmail.com

Received 30.10.2023
Approved after reviewing 21.01.2024
Accepted 22.03.2024

6.	 Li Z., Jing X.Y., Zhu X. Progress on approaches to software defect
prediction // IET Software. 2018. V. 12. N 3. P. 161–175. https://doi.
org/10.1049/iet-sen.2017.0148

7.	 Dos Santos G.E., Figueiredo E. Failure of one, fall of many: An
exploratory study of software features for defect prediction // Proc.
of the IEEE 20th International Working Conference on Source Code
Analysis and Manipulation (SCAM). 2020. P. 98–109. https://doi.
org/10.1109/SCAM51674.2020.00016

8.	 Zain Z.M., Sakri S., Ismail N.H.A., Parizi R.M. Software defect
prediction harnessing on multi 1-dimensional convolutional neural
network structure // Computers, Materials and Continua. 2022. V. 71.
N 1 . P. 1521. https://doi.org/10.32604/cmc.2022.022085

9.	 Chen L., Fang B., Shang Z., Tang Y. Tackling class overlap and
imbalance problems in software defect prediction // Software Quality
Journal. 2018. V. 26. N 1. P. 97–125. https://doi.org/10.1007/s11219-
016-9342-6

10.	 Nevendra M., Singh P. Software defect prediction using deep learning
// Acta Polytechnica Hungarica. 2021. V. 18. N 10. P. 173–189. https://
doi.org/10.12700/aph.18.10.2021.10.9

11.	 Ahmad A., Musa K.I., Zambuk F.U., Lawal M.A. Optimizing
connection weights in a Long Short-Term Memory (LSTM) using
Whale Optimization Algorithm (WOA): A review // Journal of
Science, Technology and Education. 2022. V. 10. N 3. P. 362–373.

12.	 Hochreiter S., Schmidhuber J. Long short-term memory // Neural
computation. 1997. V. 9. N 8. P. 1735–1780. https://doi.org/10.1162/
neco.1997.9.8.1735

 Авторы
Алию Айхонг Анес — студент, Университет Абубакара Тафавы
Балева (ATBU), Баучи, 740272, Нигерия, https://orcid.org/0009-0009-
5169-7593, Anesaliyu123@gmail.com
Имам Яу Бадамаси — PhD, старший преподаватель, Университет
Абубакара Тафавы Балева (ATBU), Баучи, 740272, Нигерия, https://
orcid.org/0000-0002-2710-8973, biyau@atbu.edu.ng
Али Усман — PhD, преподаватель, Федеральный педагогиче-
ский колледж (технический), Гомбе, 760101, Нигерия, https://orcid.
org/0000-0001-9645-3642, usmanali@fcetgombe.edu.ng
Ахмад Абузайру — студент, Университет Абубакара Тафавы Балева
(ATBU), Баучи, 740272, Нигерия, https://orcid.org/0000-0003-0229-
739X, Abuzairuahmad2020@gmail.com
Абдулрахман Лаваль Мустафа — PhD, главный научный сотруд-
ник, Университет Абубакара Тафавы Балева (ATBU), Баучи, 740272,
Нигерия, https://orcid.org/0000-0002-1037-2022, musbaida@gmail.com

Статья поступила в редакцию 30.10.2023
Одобрена после рецензирования 21.01.2024
Принята к печати 22.03.2024

Работа доступна по лицензии
Creative Commons
«Attribution-NonCommercial»

https://doi.org/10.1049/iet-sen.2017.0148
https://doi.org/10.1049/iet-sen.2017.0148
https://doi.org/10.1109/SCAM51674.2020.00016
https://doi.org/10.1109/SCAM51674.2020.00016
https://doi.org/10.32604/cmc.2022.022085
https://doi.org/10.1007/s11219-016-9342-6
https://doi.org/10.1007/s11219-016-9342-6
https://doi.org/10.12700/aph.18.10.2021.10.9
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://orcid.org/0009-0009-5169-7593
https://orcid.org/0009-0009-5169-7593
mailto:Anesaliyu123@gmail.com
https://orcid.org/0000-0002-2710-8973
https://orcid.org/0000-0002-2710-8973
mailto:biyau@atbu.edu.ng
https://orcid.org/0000-0001-9645-3642
mailto:usmanali@fcetgombe.edu.ng
https://orcid.org/0000-0003-0229-739X
mailto:Abuzairuahmad2020@gmail.com
https://orcid.org/0000-0002-1037-2022
https://orcid.org/0000-0002-1037-2022
mailto:musbaida@gmail.com
https://doi.org/10.1049/iet-sen.2017.0148
https://doi.org/10.1049/iet-sen.2017.0148
https://doi.org/10.1109/SCAM51674.2020.00016
https://doi.org/10.1109/SCAM51674.2020.00016
https://doi.org/10.32604/cmc.2022.022085
https://doi.org/10.1007/s11219-016-9342-6
https://doi.org/10.1007/s11219-016-9342-6
https://doi.org/10.12700/aph.18.10.2021.10.9
https://doi.org/10.12700/aph.18.10.2021.10.9
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://orcid.org/0009-0009-5169-7593
https://orcid.org/0009-0009-5169-7593
mailto:Anesaliyu123@gmail.com
https://orcid.org/0000-0002-2710-8973
https://orcid.org/0000-0002-2710-8973
mailto:biyau@atbu.edu.ng
https://orcid.org/0000-0001-9645-3642
https://orcid.org/0000-0001-9645-3642
mailto:usmanali@fcetgombe.edu.ng
https://orcid.org/0000-0003-0229-739X
https://orcid.org/0000-0003-0229-739X
mailto:Abuzairuahmad2020@gmail.com
https://orcid.org/0000-0002-1037-2022
mailto:musbaida@gmail.com

