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Abstract
The goal of this study is to predict a software error using  Long Short-Term Memory (LSTM). The suggested system is 
an LSTM taught using the Whale Optimization Algorithm to save training time while improving deep learning model 
efficacy and detection rate. MATLAB 2022a was used to develop the enhanced LSTM model. The study relied on 19 
open-source software defect databases. These faulty datasets were obtained from the tera-PROMISE data collection. 
However, in order to evaluate the model performance to other traditional approaches, the scope of this study is limited 
to five (5) of the most highly ranked benchmark datasets (DO1, DO2, DO3, DO4, and DO5). The experimental results 
reveal that the quality of the training and testing data has a significant impact on fault prediction accuracy. As a result, 
when we look at the DO1 to DO5 datasets, we can see that prediction accuracy is significantly dependent on training 
and testing data. Furthermore, for DO2 datasets, the three deep learning algorithms tested in this study had the highest 
accuracy. The proposed method, however, outperformed  Li’s and Nevendra’s two classical Convolutional Neural 
Network algorithms which attained accuracy of 0.922 and 0.942 on the DO2 software defect data, respectively. 
Keywords
deep learning, software defect prediction, whale optimization algorithms, long short-term memory, machine learning, 
optimization algorithm
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Аннотация
Целью исследования является прогнозирование ошибки программного обеспечения с использованием 
долговременной кратковременной памяти (Long Short-Term Memory, LSTM). Предлагаемая система представляет 
собой LSTM, обучаемую с использованием алгоритма оптимизации китов (Whale Optimization Algorithm). 
Система обеспечивает экономию времени обучения. Одновременно повышается эффективность модели глубокого 
обучения (DL) и скорость обнаружения. Для разработки расширенной модели LSTM применен программный 
пакет MATLAB 2022a. Использованы 19 баз данных дефектов программного обеспечения с открытым исходным 
кодом. Ошибочные наборы данных получены из коллекции tera-PROMISE. Для оценки эффективности модели 
по сравнению с другими традиционными подходами объем исследования ограничен пятью наборами эталонных 
данных с наиболее высоким рейтингом (DO1, DO2, DO3, DO4 и DO5). Результаты экспериментов показали, 
что качество данных обучения и тестирования оказывает существенное влияние на точность прогнозирования 
ошибок. При анализе на наборах данных от DO1 до DO5 видно, что точность прогнозирования существенно 
зависит от результатов обучения и тестирования. Три алгоритма DL, протестированные на наборе данных DO2, 
показали самую высокую точность (0,942) в сравнении с двумя классическими алгоритмами с использованием 
сверточной нейронной сети Li’s и Nevendra’s (0,922). 
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глубокое обучение, SDP, прогнозирование дефектов программного обеспечения, WOA, алгоритмы оптимизации 
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Introduction

Long Short-Term Memory (LSTM) are recurrent 
neural networks which are frequ  ently used to model 
sequential data such as time series or natural language 
[1]. The Convolutional Neural Network (CNN) are built 
neural networks [2], and they are mostly used for image 
recognition and categorization [1]. Whale Optimization 
Algorithm (WOA) is a novel optimization technique 
for tackling optimization issues [3]. Recurrent Neural 
Network (RNN) is a sort of artificial neural network that 
processes data sequences [4].  Software Defect Prediction 
(SDP) goal is to detect problematic modules in order 
to allocate testing resources more effectively, which is 
an economically significant activity in software quality 
assurance [5].

Review of Related Literature
Software faults frequently result in incorrect or 

unexpected outputs and unpleasant actions [6]. We 
concentrated on models that outperform a randomly 
selected defective class of greater than 80 % accuracy [7]. 
The prediction of software mistakes is crucial to delivering 
the required software quality on a software project. Despite 
the fact that Machine Learning (ML), particularly Deep 
Learning (DL), has been advocated for forecasting software 
problems, both suffer from insufficient accuracy, over 
fitting, and complicated structure [8].

Statement of the Problem 
The increasing quantity of software faults degrades its 

quality and reliability [9]. Defect detection is becoming 
increasingly critical, and present detection approaches 
might be improved significantly. Creating a critical SDP 
model on high-dimensional and restricted data remains 
a difficult task. Thus, the current study in [10] provides 
a strategy for detecting problematic modules in software 
using modified CNNs. However, because network 
training was slow, training time needed to be reduced and 

accelerated. Also, as indicated by the author [10], more 
robust DL algorithms can be investigated to improve 
the prediction accuracy of SDP. As a result, this study 
investigates the possibilities of the WOA-based LSTM 
algorithm in the construction of a more efficient prediction 
framework. According to the authors’ knowledge, this is the 
first time an LSTM model has been adjusted with WOA to 
improve the SDP method efficacy.

Aim and objectives
The goal of this research is to create a more efficient 

and optimal DL model for SDP. This research has the 
following objectives to: 
—	 Develop an efficient LSTM-based WOA model for 

SDP. 
—	 Accelerate the network training time of the proposed 

model.
—	 Enhance the suggested model overall prediction 

performance in terms of detection rate.
—	 Evaluate the proposed model accuracy, precision, recall, 

and F1.

Methodology

The primary purpose of this research is to outperform 
the current system by employing the WOA to train an 
LSTM for SDP. As a result, this part analyzes and discusses 
the existing framework flaws, as well as the suggested 
system, data collection, implementation, and assessment 
metrics. 

Fig. 1 depicts the overall workflow of the proposed 
approach. The improved LSTM-based WOA model 
developed here was used to predict flaws in software 
projects. This method involves two stages: model creation 
and prediction. The WOA is used to train the LSTM model 
in order to reduce the training time of the DL model. 
Because of its higher accuracy, LSTM is preferred over 
CNN for processing time series data. 

A. Aliyu Aihong, B. Imam Ya’u, U. Ali, A. Ahmad, M. Abdulrahman Lawal
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Long Short-Term Memory
LSTM is more accurate than traditional RNNs [11]. 

It was first proposed in [12]. Memory blocks, as opposed 
to RNN, are discrete units found in the LSTM recurrent 
hidden layer [11]. Memory blocks are made up of memory 
cells with self-connections that record the network temporal 
state as well as specific multiplicative units called gates that 
regulate information flow. In the original architecture, each 
memory block featured three distinct gate types: an input 
gate, an output gate, and a forget gate [11].

Whale Optimization Algorithm 
The WOA makes use of a population of search agents 

tasked with locating the best global solution to optimization 
problems. Like alternative population-based algorithms, 
the search process starts with the generation of a set of 
randomly generated solutions (candidate solutions) for a 
given problem [3]. WOA is distinguished from different 
algorithms by rules that enhance the candidate solutions 
at every stage of optimization. In reality, WOA imitates 
the hunting behavior of humpback whales by locating and 
attacking prey using a technique known as “bubble-net” 
feeding. LSTM optimization for shorter training durations 
is a critical problem, particularly when working with 
large datasets and complex models [3]. As a result, the 
WOA was used in this study to accelerate the training of 
LSTM networks, as one of our key goals is to investigate 
the computing time of the algorithms as a measure for 
evaluating the model quality.

Dataset Description

This study gathered information from an article 
published in [10]; many journals and websites were 
consulted during the data collection procedure. The 
University of California Irvine (UCI) ML repository is 
a highly important site for collecting open source and 
free datasets for ML1. The researcher used 19 open-

1 Sayyad Shirabad J. and Menzies T.J. PROMISE Repository 
of Software Engineering Databases, School of Information 
Technology and Engineering, University of Ottawa, Canada. 

source software defect datasets to estimate the prediction 
abilities of the proposed LSTM base WOA model. These 
problematic datasets were obtained from the tera-PROMISE 
data collection. The scope of this study, however, is limited 
to five of the best ranking benchmark datasets in order to 
compare the model performance to that of other traditional 
approaches. The PROMISE repository was inspired by 
the UCI ML repository1. The datasets were read as XLS 
file and were divided into 80 % for training and 20 % 
for testing in order to develop a model. The dataset was 
pre-processed by carrying out data cleaning/scrubbing to 
remove typographical errors and inconsistencies in the 
data. We then saved the dataset in the format required by 
MATLAB through data formatting phase.

Table 1 shows the statistics of utilized datasets. Column 
one shows the dataset ID (D.ID), column two shows the 
dataset name, column three shows the line of code, and 
column four show the number of instances and defects. The 
line of code (LOC) it was also introduced. 

Table 2 lists the characteristics of the dataset. Columns 1 
and 3 include the feature Ids (F.ID), while columns 2 and 4 
provide the features name for all datasets.

To obtain the desired result, the input size was set to 
5, the number of hidden units to 200, and the number of 
classes to 3. These parameters are described as follows:
—	 The series Input Layer function takes an argument 

called Input Size. It is the feature dimension, or the 
number of rows in the matrix in each cell.

—	 Num Hidden Units is an LSTM Layer function 
parameter that specifies the number of hidden units in 
the LSTM network.

—	 The argument of completely Connected Layer is the 
number of labels which is the number of wolves to be 
identified in this study.
Table 3 shows the parameters settings for the proposed 

algorithm. In this work, the LSTM layer is used to analyze 
the sequence both forward and backward. The XLS file 
was opened. With a total of 600 iterations, the number of 

2005. Available at: http://promise.site.uottawa.ca/SERepository 
(accessed: 09.02.2024).

Fig. 1. Workflow of the proposed model

http://D.ID
http://F.ID
http://promise.site.uottawa.ca/SERepository
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search agents was limited to 40. The details of the chosen 
benchmark function were loaded. 

Table 4 defined all the layers of the network. We specify 
the classifier’ training options. Set Max Epochs to 7, and 
the network will iteratively run over the training data seven 
times. We chose a batch size of 27 to allow the network to 
evaluate 13 training signals at the same time. Plots can be 
set to “training-progress” to show training progress as the 
number of iterations grows. We set verbose to false to avoid 
producing the table output that matches the data given in 
the visual. We use the same mini-batch size as for training 
to categorize the test data, which is then used to determine 
the prediction accuracy. The WOA strategy is used in this 

study to maximize the network optimal weight by searching 
through the identified agents as indicated during design.

Evaluation Parameters and Performance Metrics

Following implementation, the suggested system will 
be evaluated based on its performance. The performance 
parameters for this work include accuracy, convergence 
speed, and precision score. These parameters are computed 
mathematically as follows:

Accuracy: This performance metric is concerned with 
the model correct prediction, and it may be stated as: 

	 Accuracy = .

Precision: Precisions tell you how exact or accurate 
your model is in terms of anticipated positives and how 
many of them are true positives. When the cost of false 
positives is substantial, precision is a good metric to use. It 
can be stated numerically as:

	 Precision = .

Table 1. Statistics of Dataset

D.ID Datasets LOC Instance/Defect

D01 log4j-1.0 21,549 135 / 34
D02 log4j-1.2 38,191 205 / 189
D03 lucene-2.0 50,596 195 / 91
D04 lucene-2.2 63,571 247 / 144
D05 lucene-2.4 102,859 340 / 203
D06 poi-1.5 55,428 237 / 141
D07 poi-2.0 93,171 314 / 37
D08 poi-2.5 119,731 385 / 248
D09 poi-3.0 129,327 442 / 281
D10 synapse-1.0 159,254 440 / 71
D11 synapse-1.1 42,302 222 / 60
D12 synapse-1.2 53,500 256 / 86
D13 velocity-1.4 51,713 196 / 147
D14 velocity-1.6 57,012 229 / 78
D15 xalan-2.4 225,088 723 / 110
D16 xalan-2.5 304,860 803 / 387
D17 xalan-2.6 411,737 885 / 411
D18 xerces-1.2 159,254 440 / 71
D19 xerces-1.3 167,095 453 / 69
— Total 2,306,238 7,147 / 2,858

Table 2. Features in the datasets

F.ID Features name F.ID Features name

1 wmc 11 moa
2 dit 12 mfa
3 noc 13 cam
4 cbo 14 ic
5 rfc 15 cbm
6 lcom 16 amc
7 lcom3 17 ca
8 npm 18 ce
9 loc 19 max_cc
10 dam 20 avg_cc

Table 3. Parameters Settings for the proposed algorithm

Parameter Settings

Sequence Input Layer 4
LSTM Layer 100
Fully Connected Layer 2
SoftMax Layer 1
Classification Layer 1
Max Epochs 7
Mini Batch Size 27
Verbose False
Learn Rate Schedule Piecewise
Maximum Iterations 600
input Size 5
Num Hidden Units 200
Num Classes 2

Table 4. Parameter Settings

Parameter Setting

Layer of Sequence Input Input size
The LSTM Layer 2
Layer Completely Connected 1
Softmax Layer 1
Classification Layer 1
Max Epochs 7
Mini Batch Size 27
Gradient Threshold 1
Verbose False
Execution Environment CPU
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Recall: Recall seeks to determine what percentage 
of true positives was accurately detected. It is written 
mathematically as:

	 Recall =  .

F1: is a function of accuracy and recall; it may be 
more appropriate to use when we want to strike a balance 
between precision and memory and there is an even class 
distribution (a high number of genuine negatives). It can be 
stated numerically as:

	 F1 = 2 .

Where TP (True Positive) shows whether instances 
where the actual class of the data point was 1 (true) and the 
projected class was also 1 (true)?

TN (True Negative) shows whether instances where the 
actual class of the data point was 0 (false) and the projected 
class was also 0 (false)?

FP (False Positive) shows whether instances where the 
actual class of the data point was 0 (false) and the expected 
class was 1 (true)?

FN (False Negative) shows whether instances when the 
actual class of the data point was 1 (true) and the predicted 
class was 0 (false)?

Result and Discussion

We use a static analysis-based evaluation sub-module 
to benchmark the DL architectures. On publicly available 
datasets containing collected samples, the performance 
of numerous traditional ML and DL methods for SDP is 
studied. In this part, the proposed methodologies were 
tested against the most extensively used software defect 
classification approach (CNN) on benchmark datasets. 
Precision, recall, accuracy, and F1 were all recorded for 
each one. The study was carried out on a system powered 
by an Intel Core i7 processor. The simulation output is 
evaluated and compared in three stages, beginning with 
accuracy and progressing to training performance.

From Table 5, each of the evaluation metrics (accuracy, 
precision, recall and F1) was reported between 0 and 
100. In each case, the higher is the value the better is the 
model performance. It is quite obvious that the proposed 
system achieved the best performance in terms of accuracy, 
precision, recall and F1.

Classification Accuracy
The three DL algorithms used in this study had the highest 

accuracy. In addition, the suggested system produced a 
higher classification accuracy of 0.975 on the DO2 software 
defect data than the other classical CNN systems utilized by 
[6] and [10], which reached 0.922 and 0.942, respectively. 
This means that the suggested model outperformed the 
most recent DL approach in accurately predicting the 
presence of faults. Fig. 2 compares the suggested model 
performance to that of the existing CNN approach.

Precision
On the DO2 software defect data, the suggested 

system achieved the highest precision score of 0.968 when 
compared to the other classical CNN algorithms utilized by 
[6] and [10], which achieved accuracy of 0.952 and 0.902, 
respectively.

From the Fig. 3, we can see that the proposed system 
achieved the best precision score of 0.968 on the DO2 
software defect data compare to the other classical CNN 
approaches used by [6] and [10] which achieved accuracy 
of 0.952 and 0.902, respectively.

Recall 
The suggested method had the highest precision score 

of 0.989 on the DO2 software defect data when compared 
to the other classical CNN systems utilized by [6] and [10] 
which had accuracy of 0.962 and 0.910, respectively. 
However, precision and recall are sometimes merged into a 
single statistic known as the F1 which strikes a compromise 
between the two. 

As seen from the Fig. 1, the proposed system achieved 
the best precision score of 0.989 on the DO2 software 
defect data compare to the other classical CNN approaches 

Table 5. Performance comparison with classical CNN architectures on the same dataset

Data
Li’s CNN Nevendra’s CNN Proposed WOA-LSTM

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

D01 0.682 0.623 0.533 0.574 0.748 0.756 0.778 0.767 0.942 0.951 0.936 0.923
D02 0.922 0.902 0.910 0.906 0.942 0.952 0.962 0.957 0.975 0.968 0.989 0.978
D03 0.468 0.528 0.570 0.548 0.628 0.638 0.646 0.642 0.969 0.927 0.932 0.930
D04 0.583 0.573 0.568 0.570 0.618 0.658 0.648 0.653 0.931 0.941 0.936 0.925
D05 0.597 0.586 0.592 0.589 0.697 0.721 0.732 0.726 0.903 0.974 0.932 0.926
Average 0.666 0.664 0.670 0.666 0.775 0.782 0.790 0.786 0.934 0.952 0.935 0.926

Fig. 2. Classification accuracy for all methods
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used by [6] and [10] which achieved accuracy of 0.962 and 
0.910, respectively. 

F1
On the DO2 software defect data, the suggested system 

achieved the highest F1 of 0.978 when compared to the 
other classical CNN systems utilized by [6] and [10], which 
achieved 0.957 and 0.906, respectively.

From Fig. 5, the proposed system achieved the best F1 
of 0.978 on the DO2 software defect data compare to the 
other classical CNN approaches used by [6] and [10] which 
achieved accuracy of 0.957 and 0.906, respectively.

In general, it can be clearly noticed that our proposed 
method (WOA-LSTM in Fig. 6) achieved the highest 
accuracy with 0.934, precision 0.952, recall 0.935, and 
F1 with 0.926, irrespective of the software defect datasets 
used. Compared to the existing CNN in [6], which achieved 

the values: accuracy 0.666, precision 0.664, recall 0.67, and 
F1 0.666 (Li’s CNN in Fig. 6); and existing CNN in [10] 
which achieved the values: accuracy 0.775, precision 0.782, 
recall 0.79, and F1 0.786 (Nevendra’s CNN in Fig. 6).

Computational Complexity

The  recommended model, WOA-LSTM, achieved the 
fastest run time of 112 s, beating 195 s in [6], and CNN 
203 s in [10]. This means that the proposed technique 
significantly accelerated network training while also 
providing a more efficient DL model for early detection 
of software flaws. After ten separate runs, the average 
performance for the scenario of algorithm execution time is 
shown. The testing of the three techniques on DO2 software 
data is depicted in Fig. 7.

Discussion

This study presents an optimized DL technique, 
specifically the LSTM employing WOA, to improve the 
prediction performance of software problems.

Limitation
The research was limited to a simulation technique 

and did not cover model upgrades, integration with 
development tools, or developer cooperation. As a result, 
real-world deployment must be thoroughly investigated. 
Future research will look into the practical issues of 
deploying LSTM-based defect prediction models in real-
world software development environments. Researchers 
might focus on making LSTM models more interpretable 
in the future, allowing developers and testers to understand 
why particular predictions are generated. The research 
relied on limited or specific datasets, which may have 
resulted in a lack of diversity in terms of software projects, 

Fig. 3. Precision for all methods

Fig. 4. Recall for all method

Fig. 5. F1 for all methods

Fig. 6. Average performance score for all methods

Fig. 7. Average converging time for all algorithms
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programming languages, or sectors. This shortcoming may 
limit the suggested method applicability to numerous real-
world settings. The study may have drawbacks due to the 
proposed method sensitivity to hyper parameters or specific 
setups. It may be necessary to investigate the method 
resilience in relation to different parameter values further. 

The st udy provided an optimized DL methodology 
based on the WOA; however, it did not provide a full 
comparison to other state-of-the-art defect prediction 
models or approaches. The proposed method computing 
requirements may be a limitation. Future research could 
look at combining the proposed improved DL method with 
ensemble techniques. It would be possible to investigate 
how integrating various models could improve defect 
prediction accuracy and robustness. Future research should 
look on ways to make the model decisions more visible 
and intelligible, allowing software programmers to better 
grasp the reasoning behind defect predictions. An area of 
interest could be the development of a real-time defect 
prediction framework based on the optimal DL algorithm. 
LSTM could be used in SDP research to detect, mitigate, 
and assure fairness and ethical issues.

Recommendation 
It is recommended in the future to look at transfer 

learning approaches that allow pretrained LSTM models 
(for example, on one project or domain) to be fine-tuned 
for defect prediction on various projects or domains. This 
may eliminate the requirement for large labeled datasets 
for each project. In the future, we should address the issue 
of imbalanced datasets in software prediction. Imbalanced 
datasets are widespread in this domain; therefore, research 
into how to employ LSTM networks successfully for 
such datasets is critical. This research also recommends 
investigating in the future how LSTM models may capture 
and use time-related features of software development. 
Understanding how historical data affects future defect 
prediction might be useful as software projects change 
over time. We also recommend in the future looking into 
incorporating diverse data modalities (for example, source 

code, bug reports, and version history) into LSTM-based 
models for defect prediction. Combining data from many 
sources has the potential to improve prediction accuracy.

Creating methods for estimating the uncertainty or 
confidence associated with LSTM-based predictions. 
Understanding when the model is uncertain might be 
essential for making decisions. The research also strongly 
recommends investigating ways to adapt LSTM models to 
changing software projects. In actuality, software projects 
grow, and models should be able to react to new data 
without retraining extensively. Look into approaches for 
protecting sensitive software data while utilizing LSTM 
models for fault prediction. It is critical to follow data 
protection regulations. Conduct comparative studies 
that compare LSTM-based approaches to other ML and 
classical defect prediction techniques in order to better 
understand the strengths and drawbacks of LSTM in 
various contexts. Investigate how LSTM models can 
be integrated into human-in-the-loop defect prediction 
systems, which combine machine predictions with human 
expertise.

Conclusion

The suggested system is an LSTM taught with the 
WOA to reduce training time while improving DL model 
efficacy and detection rate. In general, we can conclude that 
the suggested model runs in less than 2 minutes on the DO2 
datasets. CNN was revealed to be the most sluggish [10] 
of all the algorithms tested. The WOA successfully limits 
premature convergence toward local optima and establishes 
the appropriate values for the LSTM weights and biases, 
which accounts for the technique’s success. The results 
demonstrated that the WOA can increase convergence 
speed. The basic mechanism that helped this algorithm 
avoid the multiple local solutions to the difficulty of 
training DL algorithms was the random selection of prey in 
each selection. The property is inherited by the WOA-based 
trainer, which outperforms all classical CNN algorithms.
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