УДК 681.88 ИМИТАТОР СИГНАЛОВ НА ВЫХОДЕ ПРИЕМНЫХ ЭЛЕМЕНТОВ ПАССИВНОЙ ГИДРОАКУСТИЧЕСКОЙ СТАНЦИИ С ГИБКОЙ ПРОТЯЖЕННОЙ БУКСИРУЕМОЙ АНТЕННОЙ Ю.В. Шафранюк

Предложена математическая модель имитатора сигналов на выходе приемных элементов гибкой протяженной буксируемой антенны, учитывающая особенности излучения, распространения и приема сигналов и помех в реальных морских условиях. Приводятся требования к имитатору. Предлагается общая схема и принцип построения. На примере имитационных данных иллюстрируется его работоспособность.

Ключевые слова: гидроакустика, пассивные гидроакустические станции, антенны, многолучевое распространение, имитация.

Введение

Пассивные гидроакустические станции с гибкими протяженными буксируемыми антеннами (ГАС с ГПБА) являются одними из основных информационных систем освещения подводной обстановки и позволяют на достаточно больших дальностях осуществлять обнаружение подводных объектов [1]. Наиболее сложными задачами, решаемыми в ГАС с ГПБА, являются обнаружение шумящих объектов, их классификация и определение координат и параметров движения. Создание эффективных алгоритмов, решающих эти задачи, представляет большой научный и практический интерес.

Поскольку такие алгоритмы отличаются высокой сложностью, одним из основных этапов их проектирования является их отработка на модельных данных, учитывающих особенности излучения, распространения и приема сигналов и помех в реальных морских условиях.

Целью работы являлась разработка имитатора, обеспечивающего моделирование (имитацию) смеси сигналов и помех на выходе приемных элементов ГПБА в интересах отработки алгоритмов классификации и определения координат и параметров движения обнаруженных объектов. Научная новизна разработанного имитатора заключается в учете всех значимых факторов, влияющих на эффективность функционирования ГАС с ГПБА, в первую очередь, особенностей распространения сигнала цели в реальной морской среде.

Требования к имитатору

Для обеспечения адекватной отработки алгоритмов обнаружения, классификации и определения координат и параметров движения шумящих объектов в реальных морских условиях имитатор должен учитывать:

- конструкцию ГПБА (ее длину, количество приемных элементов, расстояние между ними, рабочий диапазон частот) [1];
- особенности маневрирования и шумоизлучения морских объектов (скорость, курс, глубина, уровень и спектр шумоизлучения в рабочем диапазоне частот в функции скорости объекта, параметры дискрет-

ных составляющих в спектре шумоизлучения, обусловленные работой корабельных механизмов, параметры амплитудной вально-лопастной модуляции шума цели, а также модуляции вследствие качки на волнении) [2–4];

- особенности распространения сигнала цели в реальной морской среде (пространственное затухание, многолучевость и аномалию распространения) [5];
- четырехкомпонентную модель распределенной помехи (шумы моря, шумы носителя, гидродинамические шумы обтекания ГПБА, шумы удаленного судоходства) [3, 5];
- особенности преобразования сигнала в приемных каналах антенны [6, 7].

Структура имитатора

С учетом перечисленных требований была предложена структура имитатора, изображенная в виде блок-схемы на рис. 1. Ниже приводится описание блоков имитатора.

Рис. 1. Структура имитатора

Блок 1. Имитатор внешней обстановки. Блок позволяет задать произвольный тестовый эпизод, описываемый:

- конструктивными параметрами ГПБА (см. выше), спектром гидродинамической помехи в функции скорости буксировки;
- начальным расположением носителя ГАС с ГПБА и произвольного числа объектов произвольных классов и их движением по произвольным траекториям;
- спектром сигнала каждого моделируемого объекта (включая носитель ГАС с ГПБА) и спектром его амплитудной огибающей;
- гидроакустическими условиями, характеризуемыми глубиной района, вертикальным распределением скорости звука, волнением поверхности моря, частотной и угловой зависимостью коэффициента отражения акустического сигнала от дна, частотной зависимостью пространственного затухания сигнала, спектром шумов моря, спектром шумов удаленного судоходства.

Имитатор внешней обстановки с заданным шагом по времени (как правило, 1 с) выдает текущее относительное (относительно носителя ГАС с ГПБА) положение всех объектов, их параметры движения. Он также синхронизирует работу всех остальных блоков.

Блок 2. Гидроакустические расчеты. В блоке на моменты времени, генерируемые в блоке 1, рассчитываются параметры сигнала каждого объекта и всех видов помех на входе ГПБА. Расчет осуществляется по специальной программе гидроакустических расчетов, учитывающей распространение акустических сигналов и помех в реальном морском волноводе [5].

Блок 3. Формирование распределенных помех. В блоке производится расчет воздействия на приемные элементы антенны помеховой составляющей акустического поля и формирование распределенных помех на выходе антенны.

Блок 4. Формирование сигналов локальных источников. В блоке производится вычисление параметров сигнала от локальных источников на входе антенны и формирование сигналов от локальных источников, приведенных к выходу каждого приемного элемента ГПБА (с учетом временного сдвига, зависящего от направления прихода сигнала на антенну).

Полученный сигнал от локального источника суммируется с сигналами от других источников и помехой на выходе текущего приемного элемента, затем подвергается дискретизации и усиливается, со-

гласно амплитудно-частотной характеристике усиления приемного тракта антенны. В итоге формируется цифровой сигнал с выхода элементарного приемного канала во временной области. Все программное обеспечение имитатора написано на языке программирования C++ в стандарте ANSI.

Ниже приведены математические модели, предложенные автором, для реализации блока 3 и блока 4 имитатора.

Метод формирования распределенных помех

Особенность моделирования сигналов локальных источников и распределенных помех состоит в том, что сигналы локальных источников можно считать плосковолновыми и, как следствие, полностью коррелированными на входе приемных элементов ГПБА (с учетом временного сдвига, зависящего от направления прихода сигнала на антенну), а коэффициент корреляции распределенных помех зависит от частоты f, расстояния между элементами антенны d и скорости звука в воде c по формуле

$$r_{pn} = \frac{\sin \frac{2\pi f d}{c}}{\frac{2\pi f d}{c}}$$

В связи с этим предлагается следующая математическая модель, описывающая шумовую помеху в частотной области:

$$S(i_{f}) \cdot \operatorname{norm}(0,1), \ i_{SR} = 1$$

$$S_{cltr}(i_{f}, i_{SR}) = \begin{cases} S(i_{f}) \cdot \operatorname{norm}\left(\frac{r_{pn}}{S_{cltr}(i_{f}, i_{SR})}S_{cltr}(i_{f}, i_{SR}-1), \sqrt{1-r_{pn}^{2}}\right), \ i_{SR} > 1 \end{cases},$$

$$S(i_{f}) = P_{smo}\left(\frac{f(i_{f})}{f_{0}}\right)^{-2} + P_{ngb}\left(\frac{f(i_{f})}{f_{0}}\right)^{-4},$$

где $i_f = \overline{1, N_f}$ – индекс частотного отсчета; $f(i_f)$ – рабочие частоты ГПБА, Гц; P_{smo} – приведенный к частоте 1 кГц уровень шумов моря, мПа·мПа; P_{ngb} – приведенный к частоте 1 кГц уровень гидродинамической помехи, мПа·мПа; f_0 – частота приведения, Гц; i_{SR} – индекс приемного элемента ГПБА; погт(•,•) – функция плотности распределения вероятности для случая гауссового распределения (первый аргумент – математическое ожидание, второй – среднеквадратическое отклонение). Для получения шумовой помехи во временной области используется обратное преобразование Фурье.

Метод формирования сигналов от локальных источников

Сигнал от каждого локального источника, приведенный к входу антенны, моделируется по следующей формуле [3]:

$$u(t_{i}) = \sum_{i_{ray}=1}^{N_{ray}} \left[P_{noise}\left(i_{ray}\right) u_{noise}\left(t_{i} + \Delta t\left(i_{ray}\right)\right) \left(1 + u_{M}\left(t_{i} + \Delta t\left(i_{ray}\right)\right)\right) + u_{DS}\left(t_{i} + \Delta t\left(i_{ray}\right), i_{ray}\right) \right],$$

где t_i – временной отсчет; $u(t_i) - t_i$ -й отсчет сигнала; i_{ray} – индекс луча; N_{ray} – число лучей; $u_{noise}(t_i + \Delta t(i_{ray})) - t_i$ -й отсчет широкополосной составляющей сигнала объекта с заданным наклоном спектра, моделируемый датчиком нормально распределенных случайных чисел с нулевым математическим ожиданием и единичным среднеквадратическим отклонением; $P_{noise}(i_{ray})$ – уровень широкополосной составляющей сигнала в набеге i_{ray} -го луча, с; $u_M(t_i + \Delta t(i_{ray}))$ – модулирующая часть сигнала; $u_{DS}(t_i + \Delta t(i_{ray}), i_{ray})$ – полигармоническая часть сигнала (дискретная часть спектра).

Модулирующая составляющая сигнала моделируется по формуле [4]

$$u_{M}\left(t_{i}\right) = \sum_{i_{M}=1}^{N_{M}} \left[k_{M}\left(i_{M}\right)\cos\left(2\pi f_{M}\left(i_{M}\right)t_{i}+\Delta\varphi_{M}\right)\right], \Delta\varphi_{M} = \operatorname{norm}\left(0, 2\pi\Delta f_{M}\left(i_{M}\right)/f_{M}\left(i_{M}\right)\right),$$

где i_M – индекс гармоники; N_M – число гармоник; $k_M(i_M)$ – коэффициент модуляции для i_M -й гармоники модулирующего сигнала; $f_M(i_M)$ – частота i_M -й гармоники модулирующего сигнала, Гц; $\Delta \varphi_M$ –

случайная фаза i_M -й гармоники; $\Delta f_M(i_M)$ – ширина i_M -й гармоники. Полигармоническая составляющая сигнала моделируется по формуле

$$\begin{split} u_{DS}(t_{i}, i_{ray}) &= \sum_{i_{DS}=1}^{N_{DS}} \left[P(i_{DS}, i_{ray}) \cos(2\pi f_{DS}(i_{DS})t_{i} + \Delta \varphi_{DS}) \right] \\ P_{DS}(i_{DS}, i_{ray}) &= P_{DS}^{*}(i_{DS}) \frac{10^{-0.05\beta R - 6} A(i_{ray})}{R}, \\ \Delta \varphi_{DS} &= \operatorname{norm}(0, 2\pi \Delta f_{DS}(i_{DS}) / f_{DS}(i_{DS})), \end{split}$$

где i_{DS} – индекс гармоники; N_{DS} – число гармоник; $P(i_{DS}, i_{ray})$ – уровень i_{DS} -й гармоники полигармонического сигнала, приведенный ко входу антенны, Па; $P_{DS}^*(i_{DS})$ – уровень i_{DS} -й гармоники полигармонической составляющей сигнала в точке излучения, Па; $A(i_{ray})$ – аномалия распространения для i_{ray} -го луча от объекта; R – расстояние до объекта в горизонтальной плоскости, км; $\beta = a + b(f_{avg}/f_0)^c$ – коэффициент пространственного затухания; a, b, c – эмпирические коэффициенты модели пространственного затухания, взятые для среднегеометрической частоты диапазона спектрального анализа – $f_{avg} = \sqrt{f_{high} \cdot f_{low}}$, где f_{low} – нижняя частота спектрального диапазона, а f_{high} – верхняя; $f_{DS}(i_{DS})$ – частота i_{DS} -й гармоники полигармонического сигнала, Гц; $\Delta \phi_{DS}$ – случайная фаза i_{DS} -й гармоники; где $\Delta f_{DS}(i_{DS})$ – ширина i_{DS} -й гармоники. Уровень широкополосной составляющей сигнала для каждого объекта на входе антенны вычисляется на основе данных помехо-сигнальной обстановки по следующей формуле:

$$P_{noise}\left(i_{ray}\right) = P_{noise}^{*}\left(i_{ray}\right) \frac{f_{0}}{f_{avg}} \sqrt{f_{high} - f_{low}} \frac{10^{-0.05\beta R - 6} A(i_{ray})}{R}$$

где $P_{noise}^*(i_{ray})$ – приведенный уровень широкополосной составляющей сигнала в точке излучения, Па/ $\sqrt{\Gamma}$ п.

Результаты тестирования имитатора

С целью проверки работоспособности имитатора были проведены проверки по следующим параметрам:

- приведенная мощность помехи на входе антенны;
- наклон сплошной части спектра помехи;
- частоты формирования дискретных составляющих (ДС) в спектре сигнала;
- частоты формирования амплитудных огибающих (AO) в спектре сигнала.

Для проведения проверок были составлены эпизоды, имитирующие взаимное положение носителя ГАС и объектов. При этом взаимное положение объектов описывалось на плоскости с помощью галсов, где галс характеризовался равномерным прямолинейным движением. Длительность каждого эпизода составляла 10 мин.

В табл. 1 приведены описания тестовых эпизодов. Эпизод 1 позволяет провести первые две проверки – проверки приведенной мощности помехи и наклона сплошной части помехи. В свою очередь, эпизод 2, имитирующий один объект, позволяет проверить частоты формирования ДС в спектре сигнала и его AO.

Номер эпизола	Число объек-	Описание поведения объекта				Описание поведения носителя ГАС					
		Координаты		Курс,	Скорость,	Глубина,	Координаты		Курс,	Скорость,	Глубина,
·····	TOB	Х, км	<i>Y</i> , км	град	узлов	М	Х, км	<i>Y</i> , км	град	узлов	М
1	0	-	-	Ι	-	-	0	0	0	0	100
2	1	-10	17,5	90	10	5	0	0	-90	0	100

Таблица 1. Описание тестовых эпизодов

В табл. 2 приведены полученное и заданное значения давления на входе антенны. Как видно из табл. 2, разность полученного и заданного значения давления не превышает 0,01 дБ, что вполне допустимо для практических приложений. Это позволяет сделать вывод, что проверка приведенной мощности помехи на входе антенны прошла успешно.

Моделируемое значение давления, дБ	35,56
Измеренное значение давления, дБ	35,57
Разность, дБ	0,01

Таблица 2. Результаты проверки давления на входе антенны

Ниже представлены результаты проверки величины наклона сплошной части спектра помехи. На рис. 2 изображен график зависимости наклона сплошной части спектра помехи от частоты в октавах (единица измерения частотного диапазона; 1 октава соответствует интервалу между частотами, логарифм отношения которых при основании 2 равен 1).

В табл. 3 приведены полученное и заданное значения наклона спектра на входе антенны. Нетрудно видеть, что разность заданного и полученного значений наклона спектра помехи не превышает 0,04 дБ, что вполне допустимо для практических приложений. Следовательно, проверка прошла успешно.

Моделируемое значение наклона спектра, дБ/октава	-6,0
Измеренное значение наклона спектра, дБ/октава	-6,04
Разность, дБ	-0,04

Рис. 2. Оценка наклона спектра: 1 – спектр сигнала; 2 – оценка наклона спектра

Измеренная частота ДС, Гц	Моделируемая частота ДС, Гц	Разность, Гц
50,05	51,0	-0,95
68,0	69,0	-1,0
101,1	102,0	-0,9
313,15	314,0	-1,15

Таблица 4. Результаты проверки частот формирования ДС в спектре сигнала

В табл. 4 приведены результаты проверки частот формирования ДС в спектре сигнала. Как видно из табл. 4, разность частот формирования ДС и истинных значений частот ДС не превышает 1,15 Гц, что для практических приложений вполне допустимо. Следовательно, проверка прошла успешно.

На рис. 3 приведен график зависимости частот ДС от времени, иллюстрирующий стабильность формирования ДС во времени.

В табл. 5 приводятся результаты проверки частот формирования ДС в спектре АО. Нетрудно видеть, что полученное значение разности не превышает 0,01 Гц, что для практических приложений вполне допустимо. Проверка прошла успешно.

Измеренная частота ДС, Гц	Моделируемая частота ДС, Гц	Разность, Гц
0,19	0,2	-0,01

Таблица 5. Результаты проверки частот формирования ДС в спектре АО

Заключение

Разработан и протестирован имитатор сигналов на выходе приемных элементов с гибкими протяженными буксируемыми антеннами, учитывающий особенности излучения, распространения и приема сигналов и помех в реальных морских условиях, влияющие на эффективность работы гидроакустических станций с гибкими протяженными буксируемыми антеннами. Предложены модели блока формирования распределенных помех и блока формирования сигналов локальных источников имитатора. Разработанный имитатор позволяет проводить отработку алгоритмов обнаружения, классификации и определения координат морских шумящих объектов.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 11-08-01097-а и 12-08-00511-а).

Литература

- 1. Корякин Ю.А., Смирнов С.А., Яковлев Г.В. Корабельная гидроакустическая техника. Состояние и актуальные проблемы. СПб: Наука, 2004. 143 с.
- 2. Справочник штурмана / Под ред. В.Д. Шандабылова. М.: Воениздат, 1968. 544 с.
- 3. Урик Р. Дж. Основы гидроакустики. Л.: Судостроение, 1978. 445 с.
- 4. Кудрявцев А.А., Лугинец К.П., Машошин А.И. Об амплитудной модуляции подводного шумоизлучения гражданских судов // Акустический журнал. 2003. Т. 49. № 2. С. 224–228.
- 5. Акустика океана / Под ред. акад. Л.М. Бреховских. М.: Наука, 1974. 693 с.
- Малышкин Г.С. Оптимальные и адаптивные методы обработки гидроакустических сигналов. Т.1. Оптимальные методы. Т. 2. Адаптивные методы. СПб: ОАО «Концерн «ЦНИИ «Электроприбор», 2009; 2011. 400 с.; 374 с.
- 7. Сергиенко А.Б. Цифровая обработка сигналов. СПб: Питер, 2002. 607 с.

Шафранюк Юлия Валентиновна – ОАО «Концерн «ЦНИИ «Электроприбор», аспирант, Julis85@yandex.ru