УДК 528.88

ПРОГНОЗИРОВАНИЕ КАЧЕСТВА ИЗОБРАЖЕНИЙ КОСМИЧЕСКИХ ОБЪЕКТОВ

А.И. Алтухов, Н.В. Гнусарев, Д.С. Коршунов

Описывается подход к прогнозированию качества изображений космических объектов, который может использоваться при планировании рабочих программ бортовых оптико-электронных систем спутников дистанционного зондирования. В основе предлагаемого авторами подхода лежит оценивание влияния на передаточные характеристики оптико-электронных систем наблюдения космических комплексов баллистических условий орбитальной съемки в задачах прогнозирования разрешающей способности и линейного разрешения на объекте.

Ключевые слова: оптико-электронные системы, разрешающая способность, линейное разрешение на объекте, сдвиг оптического изображения.

Введение

В настоящее время численность неуправляемых объектов искусственного происхождения, т.е. так называемого космического мусора, в околоземном космическом пространстве достигла такой величины, что становится неразумно не считаться с реальной опасностью повреждения дорогостоящей космической техники в результате столкновений с техногенными орбитальными частицами и даже более крупными фрагментами [1]. В этих условиях особо актуальна задача контроля технического состояния спутников с целью своевременного обнаружения неисправностей и принятия решений по их устранению, что обеспе-

чивает целостность ключевых звеньев отечественной космической инфраструктуры и ее эффективное функционирование [2]. Решение данной задачи возможно с использованием детальных изображений космических аппаратов (КА), полученных в ходе орбитальной инспекции. Примером такой инспекции может служить применение французского спутника дистанционного зондирования Земли (ДЗЗ) «Pleiades-1» для съемки аварийного спутника ДЗЗ «ENVISAT», принадлежащего Европейскому космическому агентству «ESA». Многократная уникальная съемка производилась в панхроматическом и многоспектральном режимах (рис. 1) с расстояния около 100–120 км, во время пролета спутника «Pleiades-1» под аппаратом «ENVISAT». В соответствии с программой съемки «Pleiades-1» был развернут телескопом от Земли и сопровождал аварийный спутник в течение восьми минут [3].

Полученные в ходе инспекции снимки позволили оценить состояние обшивки «ENVISAT», а также выявить изменения в его пространственной ориентации.

Результаты моделирования движения КА [4–7] с целью анализа пространственно-временных характеристик съемки объектов бортовыми оптико-электронными системами космических средств позволили сделать вывод о том, что возможность получения изображений, пригодных для интерпретации, значительно ограничивается влиянием на их качество баллистических условий орбитальной съемки. Наблюдения показали, что наиболее качественная съемка возможна, когда наблюдающий и наблюдаемый спутники находятся на орбитах с близкими параметрами. Например, спутник «Pleiades-1» имеет круговую солнечносинхронную орбиту высотой 697/699 км, что примерно на 70 км ниже высоты орбиты «ENVISAT» (766/768 км), а угол между плоскостями орбит составляет всего 6°. В случае, когда движение КА выполняется по орбитам, лежащим в разных плоскостях, изображения объектов получаются размытыми и смазанными. Причиной искажений является сдвиг изображения фокальной плоскости объектива бортовой оптико-электронной системы, возникающий вследствие высоких относительных скоростей движения КА в момент съемки, рост которого происходит по мере сокращения дальности между спутниками.

Рис. 1. Снимки аварийного спутника «ENVISAT»

Таким образом, ограничения, накладываемые баллистическими условиями орбитальной съемки на качество изображений, ведут к снижению периодичности контроля состояния КА и снижению возможности применения средств ДЗЗ для орбитальной инспекции в целом. С целью повышения качества изображений авторы предлагают оценивать влияние сдвига, вызванного баллистическими условиями съемки, на передаточные характеристики бортовых оптико-электронных систем в задаче прогнозирования линейного разрешения на объекте. Это позволит найти оптимальные пространственно-временные характеристики съемки объектов, обеспечивающие устранение искажений вследствие высоких относительных скоростей и допустимую дистанцию съемки для получения необходимого линейного разрешения. Новизна предлагаемого авторами подхода заключается в том, что поиск оптимальных условий съемки выполняется как для спутников, имеющих схожие параметры орбит, так и для спутников, орбиты которых лежат в разных плоскостях.

Модель линейного разрешения на объекте

В различных условиях съемки оптико-электронная система формирует изображения различного качества с точки зрения передачи структуры и формы объекта. Для прогнозирования качества изображений авторами предложена модель линейного разрешения на объекте, которая позволяет оценить передаточные свойства бортовой оптико-электронной системы и рассчитать показатели качества изображений, получаемых этой системой в заданных условиях съемки.

Под качеством понимается свойство изображения, характеризующее способность нести в себе сведения о геометрических и фотометрических характеристиках и параметрах объектов. Показатель качества изображений – величина, служащая конкретным индикатором этого свойства [8, 9]. Оценивание качества изображений космических объектов выполняется по таким показателям, как разрешающая способность и линейное разрешение на объекте. Под разрешающей способностью понимается максимальная пространственная частота периодической решетки, штрихи которой визуально различимы на изображении, полученном оптико-электронной системой, при использовании в качестве объекта стандартной миры заданного контраста [10]. Под линейным разрешением на объекте понимается половина периода предельно разрешаемого поля миры, приведенного к объекту наблюдения [8, 9].

Рис. 2. Звенья оптико-электронной системы

В предложенной модели основными звеньями оптико-электронной системы (рис. 2) являются объектив, матрица прибора с зарядовой связью (МПЗС) и сдвиг изображения. Оценивание передаточных свойств оптико-электронной системы выполняется на основе ее частотно-контрастной характеристики (ЧКХ), которая показывает, как изменяется контраст изображения периодической решетки с изменением пространственной частоты [8, 9].

При формировании изображения объектив оптико-электронной системы оказывает размывающее воздействие, причинами которого являются дифракция световой волны на ограничивающих ее диафрагмах и остаточные аберрации. Передаточные свойства объектива в частотной области хорошо описываются ЧКХ идеального дефокусированного объектива, которая находится по формуле

$$T_{o}(\mathbf{v}) = \left[\sin\left(\pi \mathbf{v} \Delta' \left(\frac{1}{k} - \lambda \mathbf{v}\right) \right) \right] / \left(\frac{\pi \mathbf{v} \Delta'}{k}\right)$$

где Δ' – дефокусировка объектива; k – диафрагменное число. Определение передаточных свойств МПЗС выполняется на основе ЧКХ диффузионного расплывания заряда, геометрической ЧКХ дискретного переноса и технологических потерь приемника лучистой энергии, а также ЧКХ фазы МПЗС. В частности, ЧКХ диффузионного расплывания заряда рассчитывается по формуле

$$T_{drz}(\mathbf{v}) = \left(1 - \frac{\exp(-\alpha_s W)}{1 + \alpha_s L}\right) / \left(1 - \frac{\exp(-\alpha_s W)}{1 + \alpha_s L_o}\right),$$

где W – глубина обедненного слоя; L_o – диффузионная длина носителей; α_s – коэффициент поглощения в кремнии на средней длине волны. Геометрическая ЧКХ дискретного переноса и технологических потерь МПЗС в режиме временной задержки накопления находится по формуле:

$$T_{gpd}(\mathbf{v}) = \left(\sin(a)/a\right) \left(\sin(b)/b\right) \exp\left[-b_p \left(4\mathbf{v}d\right)^2\right]$$

где *a* – коэффициент геометрического размера элемента МПЗС; *b* – коэффициент дискретного переноса заряда; *b_p* – относительная величина технологических потерь МПЗС; *d* – размер элемента МПЗС. Расчет ЧКХ фазы приемника лучистой энергии выполняется по формуле:

$$T_f(\mathbf{v}) = \cos(\pi \mathbf{v} d)^{\mathbf{v} d}$$

Графические зависимости, полученные на основе экспериментальных данных о передаточных свойствах объектива и МПЗС, приведены на рис. 3.

Результирующая ЧКХ матрицы ПЗС рассчитывается по формуле

$$T_{pzs}\left(\mathbf{v}\right) = T_{drz}\left(\mathbf{v}\right)T_{gpd}\left(\mathbf{v}\right)T_{f}\left(\mathbf{v}\right).$$

Орбитальная съемка в условиях высоких относительных скоростей движения спутников приводит к возникновению сдвига изображения, построенного объективом оптико-электронной системы и, как следствие, к снижению качества снимка. Оценить величину сдвига изображения можно по формуле

$$T_{sd}\left(\nu\right) = \left[\frac{\sin\pi H_{sd}\eta_{0}\nu}{\pi H_{sd}\eta_{0}\nu}\frac{\sin\pi H_{sd}\left(1-\eta_{0}\right)\nu}{\pi H_{sd}\left(1-\eta_{0}\right)\nu}\right],$$

где η_0 – оптический коэффициент полезного действия фотозатвора; H_{sd} – сдвиг оптического изображения, который рассчитывается по формуле

$$H_{sd} = T_{ex} V_{im},$$

где T_{ex} – время экспонирования; V_{im} – скорость движения оптического изображения в фокальной плоскости. Результирующая ЧКХ оптико-электронной системы равна произведению ЧКХ ее звеньев и рассчитывается как

В качестве показателя для оценивания качества изображения, характеризующего способность оптико-электронной системы передавать структуру и форму мелких деталей объекта, используется разрешающая способность, которая может быть определена как пространственная частота, для которой выполняется равенство

$$cT_{os}\left(\nu\right)=C_{p}\left(\nu\right),$$

где *с* – контраст, при котором находится разрешающая способность; $T_{os}(v)$ – результирующая ЧКХ оптико-электронной системы; $C_p(v)$ – пороговый контраст на изображении объекта. В свою очередь, пороговый контраст, визуально воспринимаемый на изображении объекта, рассчитывается по формуле

 $C_{p}(v) = (2, 3q_{p} / g) (D_{za} + D_{st})^{0.5}$, где q_{p} – пороговое отношение сигнал/шум; g – градиент светосигнальной характеристики; D_{za} – дисперсия шума зрительного анализатора; D_{st} – дисперсия шума системы тракта. Вторым показателем качества изображений служит линейное разрешение на объекте, характеризующее линейный размер минимального элемента различимого на изображении объекта и рассчитываемое по формуле

$$L_p = \frac{dk_m}{2R_c f'}$$

где *d* – дальность съемки; *f* ′ – фокусное расстояние; *k*_m – коэффициент формы объекта.

Влияние баллистических условий съемки на качество изображений

Результаты экспериментальных расчетов показывают, что параметры орбит спутников значительно влияют на скорость движения оптического изображения и, как следствие, на качество получаемых снимков. Например, в случаях, когда движение спутников выполнялось по круговым орбитам с высотами 650–750 км, а угол между плоскостями орбит не превышал 10°, максимальное значение скорости движения оптического изображения достигало 3–9 мм/с. В случаях, когда угол между плоскостями орбит спутников менялся от 10° до 180°, скорость движения оптического изображения достигала значений 40– 130 мм/с. Подобные изменения скорости движения оптического изображения существенно влияют на ЧКХ сдвига изображения и, как следствие, на результирующую ЧКХ всей оптико-электронной системы. Как видно из рис. 4, чем ниже скорость движения оптического изображения и, следовательно, меньше величина сдвига, тем выше частота штрихов, которые могут быть переданы оптико-электронной системой при формировании изображения периодической решетки.

На рис. 5 представлены графические зависимости, наглядно демонстрирующие, как изменяется разрешающая способность оптико-электронной системы при различных ЧКХ. Из рис. 5 видно, что, чем выше скорость движения оптического изображения и, следовательно, больше величина сдвига, тем ниже контраст объекта на изображении, построенном оптико-электронной системой, и ниже разрешающая способность. При выполнении экспериментальных расчетов также было установлено, что максимальный сдвиг изображения соответствует минимальной дальности съемки. На рис. 6 представлены графические зависимости линейного разрешения на объекте от дискретной совокупности пространственно-временных положений спутников на орбитах в моменты съемки, где точка 60 по оси абсцисс соответствует минимальной дистанции наблюдения, равной 120 км.

Рис. 6. Линейное разрешение на объекте

Из рис. 6 видно, что минимальная дальность съемки соответствует наименьшему значению линейного разрешения на объекте и наилучшему качеству изображения только тогда, когда параметры орбит наблюдаемого и наблюдающего спутников имеют схожие параметры (кривые 1, 2 и 3). В случае, когда орбиты спутников лежат в разных плоскостях, из-за сдвига оптического изображения снимки получаются худшего качества, чем при съемке с больших дистанций (кривые 4 и 5). Таким образом, прогнозирование качества изображений позволяет определить оптимальные пространственно-временные параметры съемки для получения снимков, пригодных для интерпретации.

Заключение

В работе рассмотрена модель линейного разрешения на объекте, которая позволяет прогнозировать качество изображений космических объектов, получаемых оптико-электронными системами спут-

ников дистанционного зондирования. Достоинством данной модели является то, что оценивание передаточных свойств оптико-электронных систем спутников и расчет показателей качества итоговых изображений осуществляется с учетом баллистических условий орбитальной съемки, а именно – с учетом относительных скоростей движения космического аппарата. Модель линейного разрешения может использоваться на этапе планирования программы работы бортовых оптико-электронных систем, что обеспечит экономию ресурса орбитальных комплексов и повысит периодичность контроля технического состояния спутников.

Литература

- 1. Иванов В.Л., Меньшиков В.А., Пчелинцев Л.А., Лебедев В.В. Космический мусор: Проблема и пути ее решения. М.: Патриот, 2002. 360 с.
- 2. Суханов С.А., Шаргородский В.Д., Шилин В.Д. Система контроля космического пространства. М., 2011. 206 с.
- Кучейко А.А. Уникальное применение спутника ДЗЗ орбитальная инспекция [Электронный ресурс]. – Режим доступа: http://www.scanex.ru/ru/news/ News_Preview.asp, свободный. Яз. рус. (дата обращения 28.02.2013).
- Иванов Н.М., Лысенко Л.Н. Баллистика и навигация космических аппаратов: Учебник для вузов. М.: Дрофа. 2004. – 544 с.
- 5. Гнусарев Н.В. Геодезическое и баллистическое обеспечение космических систем дистанционного зондирования Земли. СПб: ВКА имени А.Ф. Можайского, 2008. 220 с.
- 6. Разыграев А.П. Основы управления полетом космических аппаратов. М: Машиностроение, 1990. 440 с.
- Мамон П.А., Кульвиц А.В. Теория полета космических аппаратов. Курс лекций. СПб: ВКА имени А.Ф. Можайского, 2007. – 160 с.
- Мельканович А.Ф. Фотографические средства и их эксплуатация. М.: Министерство обороны, 1992. – 440 с.
- 9. Авдеев С.П. Анализ и синтез оптико-электронных приборов. СПб: Правда, 2000. 680 с.
- 10. ГОСТ 23935-79. Аэрофотоаппаратура и аэрофотографирование. Термины и определения Введ. 01.01.1981. М.: Гос. комитет СССР по стандартам. 24 с.

Алтухов Александр Иванович Военно-космическая академия имени А.Ф. Можайского, кандидат технических наук, зав. кафедрой, ааi_51@mail.ru Гнусарев Николай Васильевич Военно-космическая академия имени А.Ф. Можайского, кандидат технических наук, доцент, gnusarev2006@rambler.ru Коршунов Денис Сергеевич Военно-космическая академия имени А.Ф. Можайского, соискатель, Korshunov.Denis@rambler.ru