МАТЕРИАЛОВЕДЕНИЕ И НАНОТЕХНОЛОГИИ

УДК: 548, 546.06 ИССЛЕДОВАНИЕ ГАЛЛАТОВ ЛАНТАНА МЕТОДОМ РЕНТГЕНФАЗОВОГО АНАЛИЗА

О.А. Пшенко, Л.А. Пьянкова

Исследован фазовый состав галлатов лантана (LaGaO₃) со структурой перовскита, допированных примесью Co^{3+} (до 10 вес. %), методом рентгенофазового анализа. Профильный анализ рентгенограмм показал, что с увеличением концентрации примеси кобальта в смешанных кристаллах LaGa_{1-x}Co_xO₃ происходит незначительное искажение кубической кристаллической решетки с уменьшением параметра элементарной ячейки на 0,03 нм. Тем не менее, в галлатах лантана возможно локальное понижение симметрии, что проявляется на рентгенограммах в виде расщепления дифракционного максимума (211).

Ключевые слова: галлаты лантана, рентгенофазовый анализ, допированные полупроводники, перовскитные структуры, качественный анализ полупроводников.

Введение

Несмотря на широкий выбор полупроводниковых материалов, используемых в различных областях современной техники, создаются новые материалы, требующие тщательного изучения с целью разработки технологии их получения, включая очистку и допирование. Сложные оксиды со структурой перовскита представляют большой интерес как материалы для твердооксидных топливных элементов (solid oxide fuel cells – SOFC), кислородоотделительных мембран, мембранных реакторов селективного окисления, твердоэлектролитных кислородных насосов и сенсоров. Транспортные свойства (ионная и дырочная проводимость) этого оксида определяются катионами, занимающими позиции La и Ga в кристаллической решетке перовскита LaGaO₃, а также внешними условиями (температура и парциальное давление кислорода). Эти свойства изменяются в широких пределах и могут быть управляемы за счет частичного замещения в обеих катионных подрешетках. Перспективным мембранным материалом с высокой смешанной проводимостью являются твердые растворы на основе LaGaO₃ [1–5].

Согласно работе [2], в системе $(1-x)LaCoO_3 - xLaGaO_3$ образуется непрерывный ряд твердых растворов состава LaGa_xCo_{1-x}O₃. Изменение степени замещения *x* ионов Ga³⁺ ионами Co³⁺ приводит к увеличению удельной электропроводности и ромбоэдрическому искажению структуры.

Цель данной работы – изучение степени влияния примеси Co³⁺ на параметры элементарной ячейки перовскита галлата лантана (LaGaO₃) путем сравнения профильных рентгенограмм недопированного («чистого») и допированных соединений.

Методика исследования

Объекты исследования представляли собой соединение LaGaO₃ со структурой кубического перовскита (рис. 1), допированное Co³⁺ (5, 7 и 10 вес. %). Образцы были получены по керамической технологии путем прокаливания на воздухе тонко растертой и спрессованной в таблетки смеси La₂O₃ и Ga₂O₃ при 1450°C в течение 50 часов. Гомогенность полученных твердых растворов контролировалась по критерию постоянства магнитной восприимчивости, достигавшегося оптимизацией времени прокаливания и состава газовой среды (воздух, O₂) [5].

Рис. 1. Ячейка LaGaO₃. Ионы галлия – в центре ячейки, ионы лантана – в вершинах ячейки, ионы кислорода – в центре граней

Рентгенофазовый анализ порошков поликристаллов проведен в СПбГУ ИТМО на настольном рентгеновском дифрактометре «ДИФРЕЙ» (производитель ЗАО «Научные приборы»). Условия съемки: анод рентгеновской трубки $Cu_{k\alpha}$ ($\lambda = 0,154051$ нм), напряжение 40 кВ, рентгенооптическая схема Брегга–Брентано, позиционно-чувствительный изогнутый детектор. Время съемки – 600 с. Для калибровки детектора использован внешний стандарт Al_2O_3 . Результаты измерений обрабатывались в программном комплексе Difract.

Результаты исследований

Полученные рентгенограммы (рис. 2) смешанных соединений $LaGa_{1-x}Co_xO_3$, сравнивались между собой (профильный анализ) и с эталоном – «чистым» соединением $LaGaO_3$ (карточка ICSD #76047 в базе дифрактометрических данных). Рентгенограммы допированных соединений $LaGa_{1-x}Co_xO_3$ во всем диапазоне исследуемых концентраций практически совпадают, т.е. изменение концентрации примеси кобальта (5, 7 и 10 вес.%) не приводит к заметным изменениям параметров кристаллической решетки.

Рис. 2. а) Обзорные рентгенограммы («ДИФРЕЙ»): LaGa_{0,95}Co_{0,05}O₃ (нижний профиль), LaGa_{0,93}Co_{0,07}O₃ (средний профиль) и LaGa_{0,9}Co_{0,1}O₃ (верхний профиль); б) Фрагмент рентгенограммы (расщепление верхнего дифракционного максимума (211)). *I*, имп – количество импульсов, накопленных за 600 с, *d*, нм – межплоскостное расстояние

В табл. 1 приведены значения углов 20 (θ – угол скольжения из формулы Вульфа-Брегга) и *hkl* (индексы Миллера) для эталона и допированных соединений LaGa_{1-x}Co_xO₃. Также представлены значения отклонения $\Delta 2\theta$ от эталона, σ (среднее квадратичное отклонение), и интенсивность характеристического излучения *I* (в % от максимального значения) при числе дифракционных максимумов *n* = 6. Погрешность величины изменения $\Delta 2\theta$ рассчитывалась по формуле $\Delta 2\theta = 2\theta_{3T} - 2\theta_{x}$, где $2\theta_{3T}$ – величина удвоенного угла скольжения эталона, $2\theta_x$ – величина удвоенного угла скольжения исследуемых образцов LaGaO₃ с примесями Co³⁺.

LaGaO ₃ (эталон)			LaGa _{0,95} Co _{0,05} O ₃		LaGa _{0,93} Co _{0,07} O ₃			LaGa _{0.9} Co _{0.1} O ₃			
	2θ,	hkl	20,	Ι,	Δ2θ,	2м,	Ι,	Δ2θ,	2θ,	Ι,	Δ2θ,
град		град	%	град	град	%	град	град	%	град	
1	32,560	(110)	32,69	100	-0,13	32,61	100	-0,05	32,62	100	-0,06
2	40,160	(111)	40,21	7	-0,05	40,12	10	0,04	40,11	11	0,05
3	46,713	(200)	46,71	22	0,003	46,67	34	0,043	46,64	29	0,073
4	58,097	(211)	58,15	28	-0,053	58,04	32	0,057	58,11	29	-0,013
5	68,203	(220)	68,73	9	-0,527	69,66	8	-1,457	69,73	9	-1,527
6	77,632	(310)	78,82	13	-1,188	78,78	9	-1,148	78,78	10	-1,148
σ					0,869			1,125			1,179
<i>K</i> , %					71			64,5			59

Таблица 1. Профильные параметры рентгенограмм

Из графика зависимости σ разности между углами скольжения эталона и исследуемых образцов от концентрации примеси (рис. 3, а) видно, что по мере увеличения содержания кобальта увеличивается разница между углами 2θ эталонного образца и исследуемых образцов. Сравнение исследуемых объектов с эталонным образцом методом весового корреляционного анализа [6] показало уменьшение коэффициента корреляции *К*% Пирсона с увеличением концентрации примеси в кристаллах (рис. 3, б).

Рис. 3. Концентрационная зависимость (вес.% Со): а – σ (среднего квадратичного отклонения углов 2θ), б – коэффициента корреляции *К* профиля рентгенограмм образцов

Интенсивности отдельных дифракционных максимумов рентгенограмм исследуемых соединений (табл. 1) изменяются незначительно, т.е. текстура не проявляется, и, следовательно, изменения в кристаллической решетке происходят постепенно.

Несмотря на отсутствие скачков интенсивности, увеличение концентрации примеси Co³⁺ приводит к расщеплению дифракционного максимума (211) (рис. 2, б). Расщепление дифракционного максимума может быть связано со следующими причинами:

- образование самостоятельной фазы LaCoO₃;
- локальное искажение структуры, связанное с неравномерным вхождением примеси Co³⁺ в структуру галлата лантана;
- изменение химического состава поверхности образцов при хранении в воздушной атмосфере.

Результаты расчетов параметров элементарной ячейки перовскитоподобного соединения La-GaCo_xO₃ представлены в табл. 2. Основными параметрами элементарной ячейки кубического кристалла являются a – период решетки (длина ребра элементарной ячейки) и $V = a^3$ – объем элементарной ячейки:

$$a = d\sqrt{h^2 + k^2 + l^2}$$

где d – межплоскостное расстояние, h, k, l – индексы Миллера. Для расчета параметров выбирались дифракционные максимумы (*hkl*), имеющие симметричную форму и достаточную интенсивность: (110), (111), (200), (211), (220), (310). Из данных табл. 2 можно видеть, что в полупроводниках LaGa_{1-x}Co_xO₃ уже при начальном пятипроцентном допировании Co³⁺ происходит уменьшение параметров элементарной ячейки на 0,03 нм.

Параметр	LaGaO ₃ (эталон)	LaGa _{0,95} Co _{0,05} O ₃	LaGa _{0,93} Co _{0,07} O ₃	LaGa _{0,9} Co _{0,1} O ₃
а, нм	0,3886	0,3857	0,3856	0,3854
<i>V</i> , нм ³	0,05868	0,05739	0,05733	0,05727

Габлица 2. Па	араметры эле	ментарных я	чеек исследуемы	к образцов
---------------	--------------	-------------	-----------------	------------

Выводы

Анализ рентгенограмм, проведенный в работе, показывает, что с увеличением концентрации примеси кобальта в галлате лантана LaGa_{1-x}Co_xO₃ уменьшаются параметры элементарной ячейки. Такое изменение связано с различием размеров замещаемых ионов. Ион Ga³⁺ с координационным числом 6 в ячейке, имеющий радиус 0,076 нм, замещается ионом Co³⁺ (радиус иона 0,64 нм), что и приводит к уменьшению объема элементарной ячейки. Полученная закономерность должна позволить определять концентрацию примеси кобальта в полупроводниках галлата лантана со структурой перовскита путем наложения спектров и сравнения их с эталонными профилями.

Проведенное исследование данных полупроводников выявило также, что допирование галлатов лантана кобальтом до 10 вес. % не приводит к существенному искажению кристаллической решетки кубической сингонии. Однако с увеличением концентрации Co³⁺ происходит постепенное расщепление пика (211), что может свидетельствовать о локальном понижении симметрии элементарной ячейки кристаллов LaGa_{1-x}Co_xO₃ и служить критерием стабильности структурно-фазового состояния соединения.

Литература

- 1. Бледнов А.В. Получение и изучение смешанных проводников на основе галлата лантана как материалов для кислородных мембран // Тезисы III школы-конференции молодых ученых по химической синергетике. 2006. С.104.
- Лубинский Н.Н., Башкиров Л.А., Петров Г.С., Кандидатова И.Н. Физико-химические свойства твердых растворов кобальтитов-галлатов лантана // Тезисы VIII Международной конференции «Химия твердого тела и современные микро- и нанотехнологии». – Кисловодск, 2008. – С. 458.
- 3. Бакланова И.В., Леонидов И.А., Переляева Л.А. Синтез и исследование твердых растворов на основе галлата лантана (La,Sr)(Ga,Mg)O_{3-δ}// Там же. С. 510.
- 4. Данилов Ю.В. Электрические характеристики La_{0.85}Sr_{0.15}Ga_{0.85-xrxmg0.15}O_{3-δ} (R= Cr, Mn, Fe, Co, Ni) // Материалы конференции «Ломоносов-2008». Физическая химия. М., 2008. С. 607.
- 5. Чежина Н.В., Бодрицкая Э.В., Жук Н.А., Банников В.В., Шеин И.Р., Ивановский А.Л. Магнитные свойства и электронное строение перовскита LaGaO₃ допированного никелем // Физика твердого тела. 2008. Т. 50. Вып. 11. С. 2032.
- 6. Эсбенсен К. Анализ многомерных данных. М.: РХО, 2010. 157 с.

Пшенко Ольга Андреевна	-	Санкт-Петербургский государственный университет информационных
		технологий, механики и оптики, кандидат технических наук, студент,
		Zubanova_OA@mail.ru
Пьянкова Любовь Алексеевна	-	ЗАО «Научные приборы», методист, lyuba_pyan@mail.ru