УДК 531.383-11:531.714.7 ДИФФЕРЕНЦИАЛЬНЫЙ ЕМКОСТНОЙ ДАТЧИК ПЕРЕМЕЩЕНИЙ С ДОПОЛНИТЕЛЬНОЙ ИНФОРМАЦИЕЙ О ЗАЗОРЕ Р.Г. Люкшонков, Н.В. Моисеев

Рассмотрена структурная схема дифференциального емкостного датчика перемещений подвижной массы микромеханического гироскопа. Отличительной особенностью датчика является наличие в схеме дополнительного сигнала для компенсации изменений зазора между измерительными электродами и инерционным телом, связанных с влиянием внешних воздействий. Представлены экспериментальные результаты работы датчика перемещений. Ключевые слова: дифференциальные емкостные датчики, микромеханические инерциальные датчики, компенсация внешних воздействий, межэлектродный зазор.

Введение

Дифференциальные емкостные датчики перемещений предназначены для преобразования одной физической величины, емкости, в другую, например, в напряжение. Они является входной частью различных микромеханических устройств: гироскопов, акселерометров, датчиков давления, различных сенсоров, емкостных микрофонов, т.е. устройств, в которых используется емкостной съем информации.

Рассмотрим одно из вышеперечисленных устройств – микромеханический гироскоп (ММГ), у которого инерционное тело (ИТ) закреплено на упругом подвесе. Конструкция ММГ наиболее чувствительна к таким механическим воздействиям, как линейные вибрации, удары и ускорения вдоль оси первичных колебаний, и к изменению температуры. Перечисленные внешние воздействия приводят к изменению зазора между измерительными электродами, расположенными по оси вторичных колебаний, и ИТ. При этом изменяются характеристики датчиков угла и датчиков момента, в частности, их коэффициенты передачи. Это приводит к изменению масштабного коэффициента и смещению нуля, а также влияет на величину отрицательной жесткости и квадратурную помеху, что, в свою очередь, приводит к появлению ошибок измерения в выходном сигнале ММГ.

Проведенный анализ рынка показал, что в настоящее время емкостные датчики перемещений выпускают такие фирмы производители, как, например, «Analog Devices, Inc», «MicroSensors, Inc» и «Xemics». Но выполняются они по схеме, в которой отсутствует алгоритм измерения зазора.

Известны различные способы уменьшения влияния изменений межэлектродного зазора. В [1] предложено решение для гироскопов прямого типа преобразования, заключающееся в измерении суммы токов, протекающих через электроды дифференциального емкостного датчика для выделения информации о зазоре, и в использовании полученного сигнала для поддержания постоянной амплитуды колебаний по первичной оси. Однако такой схемы компенсации изменения зазора в ММГ замкнутого типа недостаточно, так как от величины зазора зависят моменты, приложенные к силовым электродам по оси вторичных колебаний, следовательно, и коэффициенты передачи этих электродов.

Цель настоящей работы заключается в разработке структуры дифференциального емкостного датчика перемещений, особенностью которого является наличие дополнительного выходного сигнала, пропорционального зазору между измерительными электродами и ИТ и анализе возможности использования этого дополнительного сигнала для повышения точности микромеханических датчиков.

Оценка влияния внешних воздействий на параметры микромеханического гироскопа

Теоретическое обоснование. Для оценки влияния внешних воздействий на различные параметры ММГ в качестве объекта исследования был выбран гироскоп RR-типа разработки ЦНИИ «Электроприбор» [2]. Конструктивная схема и принцип действия поясняются рис. 1.

Рис. 1. Конструктивная схема ММГ

ИССЛЕДОВАНИЕ ДИНАМИКИ МИКРОМЕХАНИЧЕСКОГО ГИРОСКОПА ...

Инерционное тело на упругом подвесе под управлением системы разгона совершает колебательные движения вокруг оси первичных колебаний Z. При появлении угловой скорости основания Ω относительно оси чувствительности Y возникают моменты сил Кориолиса, что вызывает вторичные угловые колебания ИТ вокруг оси X. При отклонении ротора на угол α , пропорциональный действующей угловой скорости, будут изменяться расстояния между измерительными электродами и ИТ. Воздействие таких внешних факторов, как температуры, вибрации, линейных ускорений и давления, будет приводить к изменению первоначального зазора d_0 на величину Δd .

Другими словами, при изменении величины зазора один и тот же наклон ротора будет вызывать различные изменения емкостей, что приведет к изменению масштабного коэффициента датчиков угла и момента. Для этого необходимо компенсировать это изменение, чтобы масштабный коэффициент датчиков оставался постоянным.

Для электродов, имеющих форму ограниченного сектора (рис. 2), емкости C_1 и C_2 могут быть определены по формулам

$$C_{1}(\alpha, \Delta d) = \varepsilon_{0} \cos(\alpha) \int_{R\min}^{R\max\Psi\max} \frac{r}{(d_{0} + \Delta d) + r\cos(\Theta)\sin(\alpha)} d\Theta dr,$$

$$C_{2}(\alpha, \Delta d) = \varepsilon_{0} \cos(\alpha) \int_{R\min\Psi\min}^{R\max\Psi\max} \frac{r}{(d_{0} + \Delta d) - r\cos(\Theta)\sin(\alpha)} d\Theta dr,$$

где $\varepsilon_0 = 8,85 \times 10^{-12} \ [Ф/м]$ – электрическая постоянная; α – угол поворота ИТ вокруг вторичной оси, [рад]; d_0 – зазор между ИТ и измерительными электродами в нейтральном положении, [м]; Δd – изменение зазора, [м]; R_{max} и R_{min} – соответственно внутренний и наружный радиусы рассматриваемого электрода, [м]; Ψ – угол сектора электрода, [град].

Рис. 2. Форма измерительных электродов

Для того чтобы оценить влияние линейных ускорений на изменение зазора, можно воспользоваться вторым законом Ньютона и законом Гука:

 $(K_{\text{mex}0z} - K_{\Im \Pi})\Delta d = ma_{0Z},$

где m – масса ИТ, [кг]; a_{0Z} – действующее ускорение вдоль оси Z, [м/с²]; $K_{\text{мех}0z}$ – линейная механическая жесткость вдоль оси Z, [Н/м]; $K_{2\pi}$ – электростатическая жесткость, [Н/м].

В табл. 1 приведена зависимость изменения зазора от действующего ускорения. Например, для зазора $d_0 = 2$ мкм при воздействии ускорения, равного 300 g, зазор изменится на 0,6 мкм, что приведет к изменению масштабного коэффициента датчика угла и масштабного коэффициента гироскопа на 30%.

Линейное ускорение вдоль оси Z , м/с ²	Изменение зазора, мкм
10 <i>g</i>	0,023
50g	0,115
300g	0,69

Таблица 1	 Зависимость 	изменения з	зазора от	действующего	ускорения
				1 1 · · · · · · · · · · · · · · · · · ·	J P -

На величину зазора влияет и температура, так как ее изменение приводит к изменению размеров ИТ. Используя коэффициент расширения кремния ($\alpha_L = 2,33 \times 10^{-6}$ 1/°C) и толщину ИТ (L = 60 мкм), можно определить линейное расширение материала при изменении температуры ΔT (табл. 2): $\Delta L = \alpha_L L \Delta L$.

$\Delta L =$	$\alpha_L I$	LΔL	•
--------------	--------------	-----	---

Изменение температуры, °C	Расширение ИТ, нм
5	0,7
20	2,8

	30	4,2
--	----	-----

Таблица 2. Зависимость расширения ИТ при изменении температуры

Экспериментальные исследования. Для подтверждения теоретических обоснований были проведены экспериментальные исследования гироскопа ММГ-ЭПТРОН. Выходной сигнал записывался при неподвижном основании. При обработке полученной информации с помощью метода вариации Аллана была получена нестабильность смещения нуля 5 °/ч (рис. 3, а). При испытании на вибростенде (при действии вибрации с увеличивающейся частотой в диапазоне 10–3000Гц и амплитудой 2 g) на некоторых образцах наблюдались изменения выходного сигнала гироскопа (рис. 3, б). Можно предположить, что это изменение связано с изменением зазора под действием вибраций.

Рис. 3. Результаты испытаний: при неподвижном основании (а); при воздействии вибраций вдоль оси первичных колебаний (б)

Структурная схема дифференциального емкостного датчика перемещений с дополнительным выходом об изменении зазора

В микромеханических датчиках прямого преобразования для решения задачи компенсации предлагается алгоритмический подход. Для этого необходимо измерять не только дифференциальное изменение емкости, но и синфазное. При этом предлагается изменить существующую структурную схему преобразователя (см. рис. 4). На измерительные емкости C1 и C2, которые представляют собой емкостной мост, с генератора сигнала (ГС) подается напряжение, изменяющееся по гармоническому закону. При этом через емкости будут протекать токи I_1 и I_2 , которые состоят из двух компонент:

$$I_1 = I(C_0) + I(\Delta C)$$

$$I_2 = I(C_0) - I(\Delta C),$$

где $I(C_0)$ – ток, пропорциональный величине зазора; $I(\Delta C)$ – ток, определяемый полезным изменением емкости. Эти токи с помощью трансрезистивных усилителей К1 и К2 преобразуются в напряжения U_1 и U_2 соответственно, которые также состоят из двух компонент $U(C_0)$ и $U(\Delta C)$.

Рис. 4. Структурная схема дифференциального емкостного датчика

Рис. 5. Зависимость сигнала об изменении зазора при влиянии: ускорения ± g (a); вибрации ±2,5 g с частотой 3 Гц (б); изменения температуры на 30°С (в)

После вычитания в точке 2 напряжение будет равно

$$U_1 - U_2 = (U(C_0) + U(\Delta C)) - (U(C_0) - U(\Delta C)) = 2U(\Delta C)$$

Но, так как при изменении зазора изменяется коэффициент преобразования датчика угла, то разность напряжений будет зависеть и от величины зазора, которую можно определить, если сложить напряжения U_1 и U_2 в точке 1:

$$U_1 + U_2 = 2U(C_0).$$

Полученное напряжение зависит только от компоненты, пропорциональной величине зазора. Выходной сигнал дифференциального емкостного датчика определяется отношением сигнала в точке 2 к сигналу на выходе сумматора 1 (блок компенсации К). При этом полученный выходной сигнал не зависит от зазора.

Экспериментальные исследования емкостного датчика подтвердили эффективность предложенного решения. На рис. 5 показаны сигналы, пропорциональные изменению зазора при воздействии вибраций и температуры. При изменении действующего ускорения вдоль оси Z с +g на -g зазор изменился примерно на 2,3 нм; при действии вибрации с частотой 3 Гц и амплитудной 2,5 g изменение составило 11,1 нм; при непосредственном нагреве чувствительного элемента на 30°С изменение составило 5,5 нм.

Использование информации об изменении зазора в устройствах компенсационного типа

В случае, когда микромеханические датчики работают по принципу компенсации входного воздействия, необходимо предпринимать дополнительные меры, так как при изменении зазора изменяются коэффициенты передачи силовых электродов.

Рис. 6. Использование сигнала в датчиках компенсационного типа

На рис. 6 приведена структурная схема датчика с обратной связью [3], включающая: чувствительный элемент ЧЭ, датчик перемещений с дополнительным выходом об изменении зазора, регулятор и силовые электроды, на которых создается момент управления M_{ymp} .

Изменение коэффициентов передачи силовых электродов при постоянном входном воздействии приводит к изменению сигнала управления U_{ynp} , который является информационным, и появлению ошибки измерения.

С помощью дополнительного сигнала, пропорционального изменению зазора, и блока компенсации К в обратной связи датчика поддерживается постоянный коэффициент передачи силовых электродов. В этом случае масштабный коэффициент датчика не зависит от зазора.

Заключение

В работе экспериментально была получена численная оценка влияния линейных ускорений, вибраций и температуры на изменение величины зазора и масштабного коэффициента гироскопа. Предложенная структурная схема дифференциального емкостного датчика перемещений позволяет выделить информацию об изменении зазора и использовать ее для коррекции масштабного коэффициента датчиков разомкнутого типа и датчиков компенсационного типа.

Литература

- Патент РФ № 2289789, МПК G 01 C 19/56, G 01 Р 9/04. Устройство измерения перемещения подвижной массы микромеханического гироскопа по оси первичных колебаний / Некрасов Я.А.; заявитель ФГУП «ЦНИИ «Электроприбор». № 2005130466/28; заявл. 23.09.05; опубл. 20.12.06, Бюл. № 35. 8 с.
- 2. Пешехонов В.Г. Микромеханический гироскоп, разрабатываемый в ЦНИИ «Электроприбор» // Мехатроника, автоматизация, управление. – 2008. – № 2. – С. 29–31.
- 3. Естифеев М.И., Розенцвейн Д.В. Анализ контактных взаимодействий в микромеханических гироскопах // Научно-технический вестник СПбГУ ИТМО. – 2010. – № 4(68). – С. 46–50.
- 4. Патент РФ № 2393428, МПК G 01 C 19/56, G 01 Р 9/04. Микромеханический гироскоп компенсационного типа / Некрасов Я.А., Моисеев Н.В.; заявитель и патентообладатель ОАО «Концерн «ЦНИИ «Электроприбор». № 2008143288/28; заявл. 28.10.08; опубл. 27.06.10, Бюл. № 18. 8 с.

Люкшонков Роман Геннадьевич Моисеев Николай Владимирович

- ОАО «Концерн «ЦНИИ «Электроприбор», инженер, lukroma@yandex.ru
- ОАО «Концерн «ЦНИИ «Электроприбор», ведущий инженер, elmon@nwgsm.ru