СРАВНИТЕЛЬНЫЙ АНАЛИЗ СИСТЕМ ЗАПАСАНИЯ ЭНЕРГИИ И ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ ОБЛАСТЕЙ ПРИМЕНЕНИЯ СОВРЕМЕННЫХ СУПЕРМАХОВИКОВ

Соколов М. А., Томасов В. С., Йастрзебски Р.


Читать статью полностью 

Аннотация

Выполнен обзор и сравнительный анализ отечественных и зарубежных литературных источников последних лет по различным накопителям энергии. Рассмотрены современные разработки и опыт применения в различных областях техники. Сформулированы сравнительные показатели накопителей энергии – эффективность, качество и стабильность. Приведены типичные характеристики таких накопителей, как электрохимические аккумуляторы, суперконденсаторы, гидроаккумулирующие электростанции, системы на основе сжатого воздуха и индуктивные сверхпроводящие накопители. Показаны преимущества и перспективы высокоскоростных супермаховиков как одного из способов запасания энергии в виде кинетической энергии вращения. Большая выходная мощность супермаховика позволяет использовать его в качестве буферного источника пиковой мощности. Показано, что супермаховики обладают большим жизненным циклом (более 20 лет) и экологичностью. Отличительной особенностью таких источников является их хорошая масштабируемость. Продемонстрировано, что супермаховики особенно эффективны в гибридных энергоустановках, работающих в режиме заряд/разряд и применяемых, в частности, на электротранспорте. Важнейшими факторами для космического применения супермаховиков являются их модульность, высокая эффективность, отсутствие механического трения и долгое время работы без обслуживания. Быстрое время реакции на изменения в сети и высокая выходная мощность могут использоваться для поддержания требуемого качества электроэнергии и общей надежности сети одновременно с выполнением задачи накопления энергии.


Ключевые слова: супермаховик, запасание энергии, хранение энергии, энергоэффективность, магнитные подшипники, возобновляемые источники

Список литературы
 
1.       Гулиа Н.В. Инерционные аккумуляторы энергии. Воронеж: ВГУ, 1973. 240 с.
2.       Bolund B., Bernhoff H., Leijon M. Flywheel energy and power storage systems // Renewable and Sustainable Energy Reviews. 2007. V. 11. N 2. P. 235–258.
3.       Daoud M.I., Abdel-Khalik A.S., Massoud A., Ahmed S., Abbasy N.H. On the development of flywheel storage systems for power system applications: a survey // Proc. 20th International Conference on Electrical Machines (ICEM 2012). Marseille, France, 2012. P. 2119–2125.
4.       Kamf T. High speed flywheel design: using advanced composite materials. Uppsala universitet, 2012.
5.       Schweitzer G., Maslen E.H. Magnetic Bearings: Theory, Design, and Application to Rotating Machinery. Springer, 2009. 600 p.
6.       Schmid J. Leerlauf im luftleeren Raum? Mechatronik Sonderheft Antriebstechnik. 2013. P. 14–15.
7.       Pyrhonen J., Jokinen T., Hrabovcova V. Design of Rotating Electrical Machines. John Wiley & Sons, 2009. 538 p.
8.       Eckroad S. Flywheels for Electric Utility Energy Storage. Technical Report. Electric Power Research Institute, Palo Alto, CA, EPRI report TR-108889, 1999.
9.       Arghandeh R., Pipattanasomporn M., Rahman S. Flywheel energy storage systems for ride-through applications in a facility microgrid // IEEE Transactions on Smart Grid. 2012. V. 3. N 4. P. 1955–1962.
10.    Wu S., Cui S., Song L. Optimal design of the rotor of air-core compulsator // Proc. 16th International Symposium on Electromagnetic Launch Technology, EML 2012. Beijing, China, 2012. Art. N 6325021.
11.    Roe G. Boeing flywheel energy storage technology [Электронныйресурс]. Режим доступа: www.uaf.edu/files/acep/BoeingFlywheelOverview_06_20_2012.pdf, свободный. Яз. англ. (дата обращения 25.06.14).
12.    Schainker R.B. Executive overview: energy storage options for a sustainable energy future // IEEE Power Engineering Society General Meeting. 2004. V. 2. P. 2309–2314.
13.    Smith S.C., Sen P.K., Kroposki B. Advancement of energy storage devices and applications in electrical power system // IEEE Power and Energy Society General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh, USA,2008. Art. N 4596436.
14.    Maxwell Technologies Ultracapacitors [Электронныйресурс]. Режим доступа:www.maxwell.com/ultracapacitors, свободный. Яз. англ. (дата обращения 26.03.2014).
15.    .UltraСapacitor[Электронный ресурс].Режим доступа: www.ultracapacitors.orgсвободный. Яз. англ. (датаобращения26.03.2014).
16.    Barton J.P., Infield D.G. Energy storage and its use with intermittent renewable energy // IEEE Transactions on Energy Conversion. 2004. V. 19. N 2.P. 441–448.
17.    Leonard W., Grobe M. Sustainable electrical energy supply with wind and pumped storage – a realistic long-term strategy or utopia // IEEE Power Engineering Society General Meeting. 2004. V. 2.
P. 1221–1225.
18.    Schainker R.B., Nakhamkin M. Compressed air energy storage (CAES): overview, performance and cost data for 25 Mw to 220 Mw plants // IEEE Transactions on Power Apparatus and Systems. 1985.
V. PAS-104. N 4. P. 791–795.
19.    Pena-Alzola R., Sebastian R., Quesada J., Colmenar A. Review of flywheel based energy storage systems // Proc. of International Conference on Power Engineering, Energy and Electrical Drives. Malaga, Spain, 2011. Art. N 6036455.
20.    Yu Y., Wang Y., Sun F. The latest development of the motor/generator for the flywheel energy storage system // Proc. of International Conference on Mechatronic Science, Electric Engineering and Computer, MEC 2011. Jilin, China, 2011. P. 1228–1232.
Информация 2001-2017 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика