УДК678. 58

ИССЛЕДОВАНИЕ СОРБЦИОННЫХ ХАРАКТЕРИСТИК ПОЛИМЕРНЫХ МИНЕРАЛ-НАПОЛНЕННЫХ КОМПОЗИТОВ ДЛЯ МЕДИЦИНЫ

Игнатьева Ю. А., Успенская М. В., Борисов О. В., Олехнович Р. О., Евсеев Р. А., Касанов К. Н.


Читать статью полностью 

Аннотация

 Методом радикальной полимеризации в водной среде получены и изучены полимерные композиции на основе акриловых производных и модифицированных ионами серебра частиц бентонита с различной долей и дисперсностью. В качестве исходных веществ выбраны производные частично нейтрализованной акриловой кислоты, акриламида и метиленбисакриламида, а также наполнителя – бентонита с массовой долей 0–0,05%. Продемонстри- ровано влияние концентрации наполнителя на абсорбционные характеристики полимерных материалов в дистиллированной воде. Показано, что увеличение доли минерал-содержащего наполнителя до 5 мас.% приводит к увеличению значений равновесной степени набухания в 1,5–2 раза по сравнению с ненаполненной полимерной матрицей. Наибольшими кинетическими характеристиками обладают акриловые нанокомпозиции с массовой долей модифицированного бентонита 0,01. Исследованы кинетические зависимости набухания новых композиционных материалов в физиологическом растворе от дисперсности наполнителя. Показано, что в области высокой дисперсности (менее 0,25 мм) доля минерал-содержащего наполнителя в количестве 1 мас.% в составе композиции приводит к значительному увеличению значений равновесной степени набухания по сравнению с ненаполненным образцом (в 1,5 раза). Изучен эффект полиэлектролитного подавления набухания полимерных композиций в физиологическом растворе, что приводит к уменьшению в среднем на порядок значений равновесной степени набухания по сравнению с этими значениями в дистиллированной воде. Показана перспективность использования полученных композиций в качестве полимерных матриц при создании раневых повязок для лечения ран различной этиологии. Результаты работы рекомендуются к использованию в медицинской практике для оптимизации протекания раневого процесса


Ключевые слова: сшитые сополимеры, акриловые полимеры, гидрогели, набухание, сорбция, бентонит, серебро

Благодарности. Работа выполнена при государственной финансовой поддержке ведущих университетов Российской Федерации (субсидия 074-U01).

Список литературы
1. Лукьянов Г.Н., Успенская М.В. Количественное описание нелинейной динамики пористой акриловой тонкой пленки // Научно-технический вестник информационных технологий, механики и оптики. 2012. № 2 (78). С. 84–87.
2. Будтова Т.В., Сулейменов И.Е., Френкель С.Я. Сильнонабухающие полимерные гидрогели – некоторые современные проблемы и перспективы // Журнал прикладной химии. 1997. Т. 70. № 4. С. 529–539.
3. Polotsky A.A., Plamper F.A., Borisov O.V. Collapse-to-swelling transitions in pH- and thermoresponsive microgels in aqueous dispersions: the thermodynamic theory // Macromolecules. 2013. V. 46. N 21. P. 8702– 8709.
4. Итин А.Л., Лукин С.Б., Успенская М.В., Соловьев В.С. Исследование оптических свойств акрилового гидрогеля для систем индикации загрязнений // Изв. вузов. Приборостроение. 2012. Т. 55. № 7. С. 85–90.
5. Sandu T., Sârbu A., Constantin F., Vulpe S., Iovu H. Acrylic hydrogels-based biocomposites: synthesis and characterization // Journal of Applied Polymer Science. 2013. V. 127. N 5. P. 4061–4071.
 6. Yang S., Park K., Rocca J.G. Semi-interpenetrating polymer network superporous hydrogels based on poly(3-sulfopropyl acrylate, potassium salt) and poly(vinyl alcohol): synthesis and characterization // Journal of Bioactive and Compatible Polymers. 2004. V. 19. N 2. P. 81–100.
7. Павлюченко В.Н., Иванчев С.С. Композиционные полимерные гидрогели // Высокомолекулярные соединения. 2009. Т. 51. № 7. C. 1075–1095.
8. Ahmad M.B., Shameli K., Darroudi M., Yunus W.M.Z., Abrahim N.A., Hamid A.A., Zargar M. Synthesis and antibacterial activity of silver/montmorillonite nanocomposites // Research Journal of Biological Sciences. 2009. V. 4. N 9. Р. 1032–1036.
9. Borisova O.V., Zaremski M.Y., Borisov O.V., Billon L. The well-defined bootstrap effect in the macroinitiator-mediated pseudoliving radical copolymerization of styrene and acrylic acid // Polymer Science – Series B. 2013. V. 55. N 11–12. P. 573–576.
10. Касанов К.Н., Попов В.А., Евсеев Р.А., Андреев В.А., Везенцев А.И., Пономарева Н.Ф., Игнатьева Ю.А., Успенская М.В., Хрипунов А.К. Модифицированный серебром монтмориллонит: получение, антимикробная активность и медицинское применение в биоактивных раневых покрытиях // Научные ведомости Белгородского государственного университета. Серия: Медицина. Фармация. 2013. Т. 23. № 18. С. 188–197.
11. Попов В.А., Игнатьева Ю.А., Успенская М.В., Касанов К.Н. Синтез сорбирующих полимеров меди- цинского назначения // Известия СПбГТИ(ТУ). 2014. № 23 (49). С. 23–25.
12. Fong J., Wood F. Nanocrystalline silver dressings in wound management: a review // International Journal of Nanomedicine. 2006. V. 1. N 4. Р. 441–449.
13. Касанов К.Н., Попов В.А., Евсеев Р.А., Игнатьева Ю.А., Успенская М.В. Биоактивное гидрогелевое раневое покрытие. Заявка № 2013149052, опубл. 06.11.2013.
14. Pillai J.J., Thulasidasan A.K.T., Anto R.J., Chithralekha D.N., Narayanan A., Kumar G.S.V. Folic acid conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific delivery of hydrophobic drugs to cancer cells // Journal of Nanobiotechnology. 2014. V. 12. N 1. Art. 25.
15. Wright J.B., Lam K., Hansen D., Burrell R.E. Efficacy of topical silver against fungal burn wound pathogens // American Journal of Infection Control. 1999. V. 27. N 4. P. 344–350.
16. Baker C., Pradhan A., Pakstis L., Pochan D.J., Shah S.I. Synthesis and antibacterial properties of silver nanoparticles // Journal of Nanoscience and Nanotechnology. 2005. V. 5. N 2. P. 244–249.
17. Banerjee I., Mishra D., Das T., Maiti T.K. Wound pH-responsive sustained release of therapeutics from a poly(NIPAAm-co-AAc) hydrogel // Journal of Biomaterials Science, Polymer Edition. 2012. V. 23. N 1–4. Р. 111–132.
Информация 2001-2017 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика