DOI: 10.17586/2226-1494-2017-17-6-1092-1099


УДК004.7

ВАРИАНТ ПОСТРОЕНИЯ СИСТЕМЫ РАСПОЗНАВАНИЯ УГРОЗ ПО ЗАПАХУ

Татарникова Т. М., Елизаров М. А.


Язык статьи - русский

Ссылка для цитирования: Татарникова Т.М., Елизаров М.А. Вариант построения системы распознавания угроз по запаху // Научно-технический вестник информационных технологий, механики и оптики. 2017. Т. 17. № 6. С. 1092–1099. doi: 10.17586/2226-1494-2017-17-6-1092-1099

Аннотация
Предмет исследования.Предложено новое решение к построению системы детектирования угроз по запаху. Разработан алгоритм обучения нейронной сети, решающей задачу распознавания опасных веществ по запаху. Приведены результаты эксперимента по подбору гиперпараметров нейронной сети, ее архитектуры и тестирования. Используемые подходы. Система детектирования представляет собой комплексное решение, позволяющее обеспечить безопасность жизни и деятельности человека путем обнаружения угроз по запаху. Комплексность решения реализуется выборомплатформы технологии Интернета вещей и нейронной сети, решающей задачу распознавания. Основные результаты. Предложен новый подход к построению системы детектирования угроз по запаху, что позволяет совершенствовать технологии обеспечения безопасности жизни и деятельности людей. Продемонстрирована работоспособность предлагаемого решения на макете, что позволяет применять технологию Интернета вещей при реализации подобных систем и разворачивать их работу на любой территории, в том числе и труднодоступных участках. Продемонстрирована сходимость результатов обученной нейронной сети с тестовыми множествами концентрации опасных веществ в воздухе. Практическая значимость. Система детектирования угроз по запаху может быть полезна как элемент комплексного решения по обеспечению безопасности людей на любой территории в зависимости от поставленных задач. Система детектирования опасных веществ по запаху доведена до макета, позволяющего обнаруживать такие угрозы как утечка бензола, бутана, метана, пропана и возгорание на ранней стадии.

Ключевые слова: безопасность человека, детектирование угроз по запаху, система детектирования, Интернет вещей, макет системы, нейронная сеть, обучение с учителем, распознавание угроз

Список литературы
1.      Р 78.36.026-2012. Рекомендации по использованию технических средств обнаружения, основанных на различных физических принципах, для охраны огражденных территорий и открытых площадок. Москва, 2012. 182 с.
2.      Долгополов Н.В., Яблоков М.Ю. «Электронный нос» – новое направление индустрии безопасности // Мир и безопасность. 2007. № 3. С. 54–59.
3.      Hersent O., Boswarthick D., Elloumi O.The Internet of Things: Key Applications and Protocols. Willey, 2012. 370 p.
4.      Recommendation Y.2060. Overview of Internet of Things. Geneva: ITU-T, 2012. 22 p.
5.      Кутузов О.И.,Татарникова Т.М. Инфокоммуникационные сети. Моделирование и оценка вероятностно-временных характеристик. СПб.: ГУАП, 2015. 381 с.
6.      Кутузов О.И.,Татарникова Т.М.Моделирование систем и сетей телекоммуникаций. СПб.: РГГМУ, 2012. 134 с.
7.      Tatarnikova T., Kolbanev M.Statement of a task corporate information networks interface centers structural synthesis // IEEE EUROCON 2009. St. Petersburg, 2009. Art. 5167903. P. 1883-1887. doi: 10.1109/EURCON.2009.5167903
8.      Кутузов О.И., Сергеев В.Г.,Татарникова Т.М. Коммутаторы в корпоративных сетях. Моделирование и расчет. СПб.: Судостроение, 2003. 170 с.
9.      Татарникова Т.М. Структурный синтез центра сопряжения корпоративных сетей // Информационно-управляющие системы. 2015. № 3. С. 92–98. doi: 10.15217/issn1684-8853.2015.3.9
10.   Татарникова Т.М., Елизаров М.А. Модель оценки временных характеристик при взаимодействии в сети Интернета вещей // Информационно-управляющие системы. 2017. №2. С. 44–50.doi: 10.15217/issn1684-8853.2017.2.44
11.   Богатырев В.А., Богатырев С.В. Резервированная передача данных через агрегированные каналы в сети реального времени // Известия высших учебных заведений. Приборостроение. 2016. Т. 59. № 9. С. 735–740. doi: 10.17586/0021-3454-2016-59-9-735-740
12.   Богатырев В.А., Кармановский Н.С., Попцова Н.А., Паршутина С.А., Воронина Д.А., Богатырев С.В. Имитационная модель поддержки проектирования инфокоммуникационных резервированных систем // Научно-технический вестник информационных технологий, механики и оптики. 2016. Т. 16. № 5(105). С. 831–838. doi: 10.17586/2226-1494-2016-16-5-831-838
13.   Богатырев В.А.Оптимальное резервирование системы разнородных серверов // Приборы и системы. Управление, контроль, диагностика. 2007. № 12. С. 30–36.
14.   IEEE Std 802.11-2007. IEEE Standard for Information Technology-Telecommunications and information exchange between systems - Local and metropolitan area network - Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. IEEE, 2007. 1232 p.
15.   Recommendation Y.2063. Framework of the WEB of Things.Geneva: ITU-T, 2012. 30 p.
16.   Bonomi F., Mulito R., Zhu J., Addepalli S. Fog computing and its role in the internet of things // Proc. 1st ACM Mobile Cloud Computing Workshop. Helsinki, 2012. P. 13–15. doi: 10.1145/2342509.2342513
17.   Kellmereit D, Obodovski D. The Silent Intelligence: The Internet of Things. DND Ventures, 2013. 166 p.
18.   Тархов Д.А. Нейросетевые модели и алгоритмы. Справочник. М.: Радиотехника, 2014. 352 с.
19.   Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы. М.: Горячая линия-Телеком, 2013. 384 с.
Информация 2001-2018 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика