DOI: 10.17586/2226-1494-2018-18-4-677-685


УДК531.231

МОДЕЛИРОВАНИЕ ПРОЦЕССА ФОРМИРОВАНИЯ МОМЕНТОВ ИНЕРЦИИ РОТОРОВ ШАРОВЫХ ГИРОСКОПОВ

Юльметова О. С., Щербак А. Г.


Читать статью полностью 
Язык статьи - русский

Ссылка для цитирования: Юльметова О.С., Щербак А.Г. Моделирование процесса формирования моментов инерции роторов шаровых гироскопов // Научно-технический вестник информационных технологий, механики и оптики. 2018. Т. 18. № 4. С. 677–685. doi: 10.17586/2226-1494-2018-18-4-677-685

Аннотация

Предмет исследования.Предложены принципы, условия и технические решения процесса создания моментов инерции сферических роторов, основанные на перераспределении массы формируемых на поверхности заготовки ротора функциональных покрытий. Исследована технология формирования требуемых величин и соотношения осевого и экваториального моментов инерции сферического узла, являющегося ротором шарового гироскопа. Традиционные методы формирования моментов инерции сплошных роторов основаны на размещении армирующих элементов, выполненных из материалов, имеющих плотность, отличающуюся от плотности основы, в теле ротора. Это осуществляется запрессовкой проволочных отрезков или диффузионной сваркой сборочных единиц ротора. В этом случае ротор состоит из нескольких составных частей, а сами армирующие элементы, внедренные в тело ротора, создают неоднородности и анизотропию свойств узла, что снижает точность ротора и негативно влияет на динамику ротора в подвесе. Кроме того, существующие методы имеют ограничения в части возможности использования неметаллических материалов для изготовления ротора. Метод. Предложен альтернативный метод формирования момента инерции ротора, который может быть использован как для металлических, так и неметаллических сферических заготовок. Суть метода заключается в формировании моментов инерции сферического узла за счет перераспределения массы формируемого на поверхности заготовки ротора функционального покрытия заданной конфигурации. Представлены математические модели для реализации предложенного метода. Основные результаты. Разработанные математические модели определяют зависимость моментов инерции от геометрических параметров заготовок ротора, а также позволяют выявить значимые факторы, позволяющие управлять процессом формирования моментов инерции. Приведены технические решения по конструктивному оформлению заготовок роторов: эллипсоид вращения, шар, у которого в зоне сферического пояса производится съем материала в виде кольцевого фрагмента, и шар с экваториальной канавкой, в котором последующее формирование сферической формы ротора осуществляется путем напыления покрытия. Практическая значимость. Представлен сравнительный анализ эффективности использования разработанных конфигураций заготовок и данных их практического использования при изготовлении реальных роторов, выполненных из различных материалов. Разработаны средства математического обеспечения, определяющие области варьирования геометрических параметров роторов и расширяющие технологические возможности процесса формирования моментов инерции за счет использования моделей для различных альтернативных вариантов изготовления роторов.


Ключевые слова: шаровой гироскоп, ротор, функциональное покрытие, армирующий элемент, момент инерции, эллипсоид вращения

Список литературы

 

  1. Egorov A.V., Landau B.E., Levin S.L., Romanenko S.G. Rotor motion in a strapdown electrostatic gyro onboard an orbiting spacecraft // Gyroscopy and Navigation. 2012. N 3. P. 144–151. doi: 10.1134/S2075108712020034
  2. Peshekhonov V.G. Gyroscopic navigation systems: current status and prospects // Gyroscopy and Navigation. 2011. V. 2. N 3. P. 111–118. doi: 10.1134/S2075108711030096
  3. Гормаков А.Н., Выонг С.Ч.Автоматизированная установка для определения моментов инерции деталей и узлов приборов // Вестник науки Сибири. 2014. №2 (12). С. 94–100.
  4. Zhang J., Chao Q., Xu B. Analysis of the cylinder block tilting inertia moment and its effect on the performance of high-speed electro-hydrostatic actuator pumps of aircraft // Chinese Journal of Aeronautics. 2018. V. 3. N 1. P. 169–177. doi: 10.1016/j.cja.2017.02.010
  5. Юльметова О.С., Ландау Б.Е., Щербак А.Г. Системный анализ процесса создания ротора шарового гироскопа на основе использования ионно-плазменных технологий // Фундаментальные исследования. 2017. № 12-1. С. 163–168.
  6. Юльметова О.С., Туманова М.А., Щербак А.Г. Исследование процесса корректировки дисбаланса сферического ротора на стадии напыления тонкопленочного покрытия // Научно-технический вестник информационных технологий, механики и оптики. 2017. Т. 17. № 6. С. 1045–1051. doi: 10.17586/2226-1494-2017-17-6-1045-1051
  7. Щербак А.Г., Кедров В.Г.Технология прецизионной диффузионной сварки в точном приборостроении. СПб.: ГНЦ РФ ЦНИИ «Электроприбор», 1996. 166 с.
  8. Ландау Б.Е., Буцык А.Я., Беляев С.Н., Буравлев А.П., Щербак А.Г. Способ изготовления ротора шарового гироскопа // Патент РФ № 2286535. Бюл. № 30, 27.10.2006.
  9. YulmetovaO.S., TumanovaM.A.Lasermarkingofcontrastimagesforopticalread-outsystems//JournalofPhysics: ConferenceSeries. 2017.V. 917. N 3. doi: 10.1088/1742-6596/917/5/052007
  10. Scherbak A., Yulmetova O. Contrast image formation based on thermodynamic approach and surface laser oxidation process for optoelectronic read-out system // Optics and Laser Technology.2018. V. 101. P. 242–247. doi: 10.1016/j.optlastec.2017.11.030
  11. Махаев Е.А., Рябова Л.П., Чесноков П.А. и др. Разработка конструкции и технологии изготовления ротора криогироскопа // Материалы XXX конференции памяти Н.Н. Острякова. Санкт-Петербург, 2016. С. 116–123.
  12. Everitt C.W.F. et al. Gravity probe B: final results of a space experiment to test general relativity // Physical Review Letters. 2011. V. 106. N 22. doi: 10.1103/PhysRevLett.106.221101
  13. Фаворин M.В.Моменты инерциител. Справочник. M.: Машиностроение, 1970. 312 с.
  14. Ram H.D., Chauhan A.K.Foundations and Applications of Engineering Mechanics. Cambridge University Press,2015. 646 p.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Информация 2001-2018 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика