doi: 10.17586/2226-1494-2018-18-4-567-572


OBJECT STRUCTURE EFFECT ON OPTIMAL LEVELS OF HOLOGRAM BINA-RIZATION IN TERMS OF RECONSTRUCTED IMAGE QUALITY

S. N. Koreshev, S. O. Starovoitov


Read the full article  ';
Article in Russian

For citation: Koreshev S.N., Starovoitov S.O. Object structure effect on optimal levels of hologram binarization in terms of reconstructed image quality. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 4, pp. 567–572 (in Russian). doi: 10.17586/2226-1494-2018-18-4-567-572

Abstract

Subject of Research. The paper presents  research results on object structure effect, that is the type and size of its elements, on optimal level of computer generated Fresnel holograms binarization in terms of reconstructed image quality. Method. The study was carried out through mathematical modeling of synthesis and reconstruction of holograms of various objects with 80x80 nm pixel size using different binarization  levels, and comparing the quality of reconstructed images. All numerical experiments were carried out in a software package for the synthesis and reconstruction of holograms using the following hologram synthesis and reconstruction parameters: wavelength equal to 13.5 nm, hologram pixel size equal to 20x20 nm, distance between object and hologram planes of 20.3 μm, reference beam angle of 18.1. A criterion for  the quality estimation of reconstructed image was a number of gradations in the threshold processing of this image, in which the intensity distribution in the reconstructed image would be identical to the intensity distribution in the original object. Main Results. The dependency graphs between binarization level and thenumber of permissible gradations for threshold image processing are obtained. For binary transparency objects used in the research, they are curves with two pronounced peaks, usually located at levels 0.2 and 0.34 along binarization axis.The object structure has an effect on specific value of optimal binarization level and on the maximum number of threshold processing gradations; the general nature of researched dependency remains unchanged even for complex transparency objects. Practical Relevance. The revealed dependency gives the possibility to accelerate the optimal level choice of synthesized holograms binarization.


Keywords: hologram, synthesized hologram, hologram reconstruction, binarization, threshold processing, reconstructed image quality

References
1.     Shwartz S., Golub M.A., Ruschin S. Computer generated hologram in spatial division multiplexing. Proceedings of Frontiers in Optics. San Jose, USA, 2015.
2.     Shwartz S., Golub M.A., Ruschin S. Computer-generated holograms for fiber optical communication with spatial-division multiplexing. Applied Optics, 2017, vol. 56, no. 1, pp. A31–A40. doi: 10.1364/AO.56.000A31
3.     Cheng Y., Isoyan A., Wallace J., Khan M., Cerrina F. Extreme ultraviolet holographic lithography: initial results. AppliedPhysicsLetter, 2007, vol. 90, no. 2. doi: 10.1063/1.2430774
4.     Koreshev S.N., Nikanorov O.V., Smorodinov D.S., Gromov A.D. Synthesizing hologram-projectors for photolithography on nonplanar surfaces. Journal of Optical Technology, 2015, vol. 82, no. 2, pp. 90–94. doi: 10.1364/JOT.82.000090
5.     Zaperty W., Kozacki T., Kujawińska M. Multi-SLM color holographic 3D display based on RGB spatial filter. Journal of Display Technology, 2016,vol. 12, no. 12, pp. 1724–1731. doi: 10.1109/JDT.2016.2615595
6.     Li X., Liu J., Jia J., Pan Y., Wang Y. 3D dynamic holographic display by modulating complex amplitude experimentally. Optics Express, 2013, vol. 21, no. 18, pp. 20577–20587. doi: 10.1364/OE.21.020577
7.     Roh J., Kim K., E. Moon, Kim S., Yang B., Hahn J., Kim H. Full-color holographic projection display system featuring an achromatic Fourier filter. Optics Express, 2017, vol. 25, no. 13, pp. 14774–14782. doi: 10.1364/OE.25.014774
8.     Lin S., Kim E. Single SLM full-color holographic 3-D display based on sampling and selective frequency filtering methods. Optics Express, 2017, vol. 25, no. 10, pp. 11389–11404. doi: 10.1364/OE.25.011389
9.     Koreshev S.N., Nikanorov O.V., Smorodinov D.S. Influence of the discreteness of synthetic and digital holograms on their imaging properties. Computer Optics, 2016, vol. 40, no. 6, pp. 793–801. doi: 10.18287/2412-6179-2016-40-6-793-801
10.  Xu L., Peng X., Guo Z., Miao J., Asundi A. Imaging analysis of digital holography. Optics Express, 2005, vol. 13, no. 7, pp. 2444–2454. doi: 10.1364/opex.13.002444
11.  Koreshev S.N., Nikanorov O.V., Smorodinov D.S. Imaging properties of discrete holograms. I. How the discreteness of a hologram affects image reconstruction. Journal of Optical Technology, 2014, vol. 81, no. 3, pp. 123–127. doi: 10.1364/JOT.81.000123
12.  Sheet A., Sayed M. et al. 3D computer generated medical holograms using spatial light modulators. Journal of Electrical Systems and Information Technology, 2014, vol. 1, no. 2, pp. 103–108. doi: 10.1016/j.jesit.2014.07.004
13.  Huebschman M., Munjuluri B., Garner H.R. Dynamic holographic 3-D image projection. Optics Express, 2003, vol. 11, no. 5, pp. 437–445.doi: 10.1364/oe.11.000437
14.  Koreshev S., Gromov A., NikanorovO. Modernized software complex for synthesis and reconstruction of Fresnel holograms projectors. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 6, pp. 12–17. (in Russian)
15.  Koreshev S.N., Smorodinov D.S., Nikanorov O.V. Influence of the discreteness of synthetic and digital holograms on their imaging properties. Computer Optics, 2016, vol. 40, no. 6, pp. 793–801. (in Russian) doi: 10.18287/2412-6179-2016-40-6-793-801
16.  Koreshev S.N., Smorodinov D.S., Nikanorov O.V., Gromov A.D. Intensity equalization for elements for binary-object images reconstructed using synthesized hologram projectors. Optics and Spectroscopy, 2013, vol. 114, no. 2, pp. 288–292. (in Russian) doi: 10.7868/S003040341302013X


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика