DOI: 10.17586/2226-1494-2018-18-5-736-743


STUDY OF OPTICAL PROPERTIES AND SPECTRAL CHARACTERISTICS OF BRAIN GLIOBLASTOMA AND LUNG ADENOCARCINOMA

R. O. Grigorev, M. K. Khodzitskiy, Tianmiao Zhang, P. S. Demchenko


Read the full article 
Article in Russian

For citation: Grigorev R.O., Khodzitsky M.K., Tianmiao Zhang, Demchenko P.S. Study of optical properties and spectral characteristics of brain glioblastoma and lung adenocarcinoma. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 5, pp. 736–743 (in Russian). doi: 10.17586/2226-1494-2018-18-5-736-743

Abstract
Subject of Research. The paper presents qualitative analysis of terahertz time-domain spectroscopy application for cancer diagnosis by measurement of the optical properties and spectral characteristics of cancer cells. For this purpose, the cultivation of two cancer cells, U-251 (glioblastoma brain) and A549 (lung adenocarcinoma), were carried out, then their refractive index, absorption coefficient and dielectric constant were measured, and the optical properties of tumor cells were compared with the optical properties of healthy cells (fibroblasts). Tumor cells contain more OH-components in comparison with healthy cells. Since terahertz radiation is heavily absorbed by water, there are differences in the spectra of healthy and oncological cells. Because of the demand for rapid and effective diagnostics of oncology (including intraoperative), the obtained results show that terahertz time-domain spectroscopy can be used for this purpose in the present time.Method. To obtain the optical properties and spectral characteristics of the researched objects, a terahertz time-domain spectroscopy method in the transmission mode was used. The researched cell lines were cultured in vitro. Optical properties and spectral characteristics of the samples were calculated by the thin film method and Fourier transform.Main Results. The results show the differences of refractive index, absorption coefficient and dielectric permittivity between the oncological cell lines U-251, A549 and the healthy cells in the frequency range 0.2-1 THz. It was found that cancer cells have higher values of refractive indices and absorption coefficients than those of healthy cells. Brain glioblastoma (U-251) has a transmission peak at the frequency of 0.24 THz.Practical Relevance. The results obtained in this work can form the basis for the intraoperative diagnosis of brain and lung cancer with the use of terahertz time-domain spectroscopy, and it is also useful in the other studies, for example, the development of biotissue phantoms in the THz frequency range

Keywords: terahertz spectroscopy, cancer diagnosis, cell lines, thin film method, optical properties, spectral characteristics, biophotonic

References

 

1.      Kaprin A.D. et al. Malignant Neoplasms in Russia in 2016 (Morbidity and Mortality). Moscow, MNIOI im. P.A. Gertsena, 2018, 250 p. (in Russian)
2.      Torre L.A., Bray F., Siegel R.L. et al. Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 2015, vol. 65, no. 2, pp. 87–108. doi: 10.3322/caac.21262
3.      Walker D., Bendel A., Stiller C. et al. Central nervous system tumors. In Cancer in Adolescents and Young Adults. Springer, 2017, pp. 335–381. doi: 10.1007/978-3-319-33679-4_14
4.      Sherman J.H., Hoes K., Marcus J. et al. Neurosurgery for brain tumors: update on recent technical advances. Current Neurology and Neuroscience Reports, 2011, vol. 11, no. 3, pp. 313–319. doi: 10.1007/s11910-011-0188-9
5.      Potapov A.A. et al. Intraoperative fluorescent visualization and laser spectrosopy in intrinsic brain tumor surgery. Voprosy Neirokhirurgii imeni N.N. Burdenko, 2012, vol. 76, no. 5, pp. 3–12. (in Russian)
6.      Unsgaard G., Ommedal S., Muller T. et al. Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection. Neurosurgery, 2002, vol. 50, no. 4, pp. 804–812. doi: 10.1097/00006123-200204000-00022
7.      Siegel P.H. Terahertz technology in biology and medicine. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 10, pp. 2438–2447. doi: 10.1109/TMTT.2004.835916
8.      Xu X., Wu Y., He T. et al. Metamaterials-based terahertz sensor for quick diagnosis of early lung cancer. Chinese Optics Letters, 2017, vol. 15, no. 11, pp. 111703. doi: 10.3788/COL201715.111703
9.      Pickwell E., Fitzgerald A.J., Cole B.E. et al. Simulating the response of terahertz radiation to basal cell carcinoma using ex vivo spectroscopy measurements. Journal of Biomedical Optics, 2005, vol. 10, no. 6, art. 064021. doi: 10.1117/1.2137667
10.   Ashworth P.C., Pickwell-MacPherson E., Provenzano E. et al. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Optics Express, 2009, vol. 17, no. 15, pp. 12444–12454. doi: 10.1364/OE.17.012444
11.   Goryachuk A., Simonova A., Khodzitsky M., Borovkova M., Khamid A. Gastrointestinal cancer diagnostics by terahertz time domain spectroscopy. Proc. IEEE Int. Symposium on Medical Measurements and Applications. Rochester, USA, 2017, pp. 134–137. doi: 10.1109/MeMeA.2017.7985863
12.   Oh S.J., Huh J.M., Kim S.H. et al. Terahertz pulse imaging of fresh brain tumor. Proc. 36th Int. Conf. on Infrared, Millimeter and Terahertz Waves. Houston, USA, 2011, 2 p. doi: 10.1109/irmmw-THz.2011.6105230
13.   Meng K., Chen T.N. et al. Terahertz pulsed spectroscopy of paraffin-embedded brain glioma. Journal of Biomedical Optics, 2014, vol. 19, no. 7, p. 077001. doi: 10.1117/1.JBO.19.7.077001
14.   Enatsu T., Kitahara H., Takano K., Nagashima T.Terahertz spectroscopic imaging of paraffin-embedded liver cancer samples. Proc. 32nd Int. Conf. on Infrared and Millimeter Waves, and 15th Int. Conf. on Terahertz Electronics, 2007, pp. 557–558. doi: 10.1109/ICIMW.2007.4516627
15.   Guseva V.A., Gusev S., Demchenko P., Sedykh E., Khodzitsky M. Optical properties of human nails in THz frequency range. Journal of Biomedical Photonics and Engineering, 2016, vol. 2, no. 4, art. 040306. doi: 10.18287/jbpe16.02.040306
16.   Reid C.B., Reese G., Gibson A.P., Wallace V.P. Terahertz time-domain spectroscopy of human blood. IEEE Transactions on Terahertz Science and Technology, 2013, vol. 3, no. 4, pp. 363–367. doi: 10.1109/TTHZ.2013.2267414
17.   Png G.M., Choi J.W., Ng B.W. et al. The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements. Physics in Medicine and Biology, 2008, vol. 53, no. 13, pp. 3501–3517. doi: 10.1088/0031-9155/53/13/007
18.   Wesseling P., Kros J.M., Jeuken J.W.M. The pathological diagnosis of diffuse gliomas: towards a smart synthesis of microscopic and molecular information in a multidisciplinary context. Diagnostic Histopathology, 2011, vol. 17, no. 11, pp. 486–494. doi: 10.1016/j.mpdhp.2011.08.005
19.   Jnawali G., Rao Y., Yan H., Heinz T.F. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Letters, 2013, vol. 13, no. 2, pp. 524–530. doi: 10.1021/nl303988q
20.   Fukuda H., Minami T., Kawase K. Tissue characterization by using phase information of terahertz time domain spectroscopy. Proc. SPIE, 2017, vol. 10103, art. 1010319. doi: 10.1117/12.2249659
21.   HeLa Kyoto EGFP-EB3 growing. CLS. Available at: http://clsgmbh.de/p1340_HeLa_Kyoto_EB3-EGFP_growing.html (accessed 04.07.2018).
22.   Chopra N. et al. Fibroblasts cell number density based human skin characterization at THz for in-body nanonetworks. Nano Communication Networks, 2016, vol. 10, pp. 60–67. doi: 10.1016/j.nancom.2016.07.009
23.   Mittleman D.M., Nuss M.C., Colvin V.L. Terahertz spectroscopy of water in inverse micelles. Chemical Physics Letters, 1997, vol. 275, no. 3-4, pp. 332–338. doi: 10.1016/S0009-2614(97)00760-4
24.   Xu J., Plaxco K.W., Allen S.J. Collective dynamics of lysozyme in water: terahertz absorption spectroscopy and comparison with theory. The Journal of Physical Chemistry B, 2006, vol. 110, no. 47, pp. 24255–24259. doi: 10.1021/jp064830w
Terahertz Biomedical Science and Technology. Ed. Son J.H. CRC Press, 2014, 337 p


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2019 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика