doi: 10.17586/2226-1494-2018-18-6-1060-1065


SCHEME WITH CUSTOMIZABLE DISSIPATIVE PROPERTIES AS APPLIED TO INTERACTION PROBLEM BETWEEN SHOCKWAVE AND HELIUM BUBBLE

D. V. Sadin, V. A. Davidchuk


Read the full article  ';
Article in Russian

For citation:
Sadin D.V., Davidchuk V.A. Scheme with customizable dissipative properties as applied to interaction problem between shockwave and helium bubble. Scientific and Technical Journal of Information Technologies, Mechanics and Optics , 2018, vol. 18, no. 6, pp. 1060–1065 (in Russian). doi: 10.17586/2226-1494-2018-18-6-1060-1065


Abstract

Subject of Research.The paper presents the study of the scheme with customizable dissipative properties for compressible multicomponent flows in case of an interaction between a shockwave and a helium bubble. Method. We chose a two-step TVD Runge-Kutta time-marching scheme. The spatial difference operator is splitting by the physical processes at each time step using an adaptive artificial viscosity of the Christensen type and TVD-reconstruction of flows by a weighted linear combination of upwind and central approximations of convective terms with flux limiter. To suppress the oscillations at the gases interface we used an Abgrall nonconservative advection equation. Main Results. Numerical convergence in the norm L1 is shown on the example of the one-dimensional Karni and Quirk test problem. We have performed a comparison of the proposed scheme and the finite-volume WENO type method of Coralic and Colonius on the same resolution grids and for the same Courant number. The presented scheme requires significantly lower computational costs for the resolution of the shock-wave pattern and vortex formation details. Practical Relevance. The scheme with customizable dissipative properties can be recommended for practical calculations of the interaction between shockwaves and gas interfaces of different physical properties, wave interference and vortex formation.


Keywords: scheme with customizable dissipative properties, multicomponent gases, shockwave, helium bubble

References
  1. Coralic V., Colonius T. Finite-volume WENO scheme for viscous compressible multicomponent flows. Journal of Computational Physics, 2014, vol. 274, pp. 95–121. doi: 10.1016/j.jcp.2014.06.003
  2. Wong M.L., Lele S.K. High-order localized dissipation weighted compact nonlinear scheme for shock- and interface-capturing in compressible flows. Journal of Computational Physics, 2017, vol. 339, no. 15, pp. 179–209. doi: 10.1016/j.jcp.2017.03.008
  3. Luo H., Baum J.D., Lohner R. On the computation of multi-material flows using ALE formulation. Journal of Computational Physics, 2004, vol. 194, no. 1, pp. 304–328.
    doi: 10.1016/j.jcp.2003.09.026
  4. Glimm J., Li X.L., Liu Y.J., Xu Z.L., Zhao N. Conservative front tracking with improved accuracy. SIAM Journal on Numerical Analysis, 2003, vol. 41, no. 5, pp. 1926–1947.
    doi: 10.1137/s0036142901388627
  5. Fedkiw R.P., Aslam T., Merriman B., Osher S. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal of Computational Physics, 1999, vol. 152, no. 2, pp. 457–492. doi: 10.1006/jcph.1999.6236
  6. Abgrall R., Karni S. Computations of compressible multifluids. Journal of Computational Physics, 2001, vol. 169, no. 2, pp. 594–623. doi: 10.1006/jcph.2000.6685
  7. Nourgaliev R.R., Theofanous T.G. High-fidelity interface tracking
    in compressible flows: unlimited anchored adaptive level set. Journal of Computational Physics, 2007, vol. 224, no. 2, pp. 836–866. doi: 10.1016/j.jcp.2006.10.031
  8. Quirk J.J., Karni S. On the dynamics of a shock-bubble interaction.Journal of Fluid Mechanics, 1996, vol. 318, no. 1, pp. 129–163. doi: 10.1017/s002211209600706
  9. Abgrall R. How to prevent pressure oscillations in multicomponentflow calculations: a quasi conservative approach. Journal of Computational Physics, 1996, vol. 125, no. 1, pp. 150–160. doi: 10.1006/jcph.1996.0085
  10. Shyue K.M. An efficient shock-capturing algorithm for compressible multicomponent problems. Journal of Computational Physics, 1998, vol. 142, no. 1, pp. 208–242. doi: 10.1006/jcph.1998.5930
  11. Marquina A., Mulet P. A flux-split algorithm applied to conservative models for multicomponent compressible flows. Journal of Computational Physics, 2003, vol. 185, no. 1, pp. 120–138.doi: 10.1016/s0021-9991(02)00050-5
  12. Sadin D.V. Application of scheme with customizable dissipative properties for gas flow calculation with interface instability evolution.Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 1, pp. 153–157 (in Russian). doi: 10.17586/2226-1494-2018-18-1-153-157
  13. Sadin D.V. TVD scheme for stiff problems of wave dynamics of heterogeneous media of nonhyperbolic nonconservative type. Computational Mathematics and Mathematical Physics, 2016, vol. 56, no. 12, pp. 2068–2078. doi: 10.1134/S0965542516120137
  14. Sadin D.V. Schemes with customizable dissipative properties as applied to gas-suspensions flow simulation. Mathematical Models and Computer Simulations, 2017, vol. 29, no. 12, pp. 89–104 (in Russian).
  15. Gottlieb S., Shu C.-W. Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 1998, vol. 67, no. 221, pp. 73–85. doi: 10.1090/S0025-5718-98-00913-2
  16. Christensen R.B. Godunov Methods on a Staggered Mesh - An Improved Artificial Viscosity. Technical Report UCRL-JC-105269, 1990, 11 p.
  17. Haas J.F., Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. Journal of Fluid Mechanics, 1987, vol. 181, no. 1, pp. 41–76. doi: 10.1017/s0022112087002003


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика