doi: 10.17586/2226-1494-2019-19-1-1-14


SURVEY ON FUZZY LOGIC METHODS IN CONTROL SYSTEMS OF ELECTROMECHANICAL PLANTS

R. Strzelecki, G. L. Demidova, D. V. Lukichev, N. A. Polyakov, A. A. Abdullin, S. Y. Lovlin


Read the full article  ';
Article in Russian

For citation:
Strzelecki R., Demidova G.L., Lukichev D.V., Polyakov N.A., Abdullin A.А., Lovlin S.Yu. Survey on fuzzy logic methods in control systems of electromechanical plants.Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 1, pp. 1–14 (in Russian). doi: 10.17586/2226-1494-2019-19-1-1-14


Abstract
The paper reviews control algorithms of electromechanical systems using the theory of fuzzy logic, describes basic principles of synthesis of these systems, discusses methods for analyzing their stability based on fuzzy Lyapunov functions. These algorithms are most often implemented in the form of various controllers, which application is justified in the systems with unknown mathematical model, or not determined, or strictly nonlinear, with nonlinear disturbances in their structure or in the external forces. We describe the basic methods of inference used in the design of various types of fuzzy logic controllers proposed by Zadeh, Mamdani, Takagi, Sugeno, and Mendel. A typical structural scheme of such controllers is given. The considered applications of these controllers in the control of various technical plants give the possibility to classify them according to various criteria: topologies of structures, inference mechanism, methods of defuzzification, types of membership functions. We review methods for adjustment of such controllers by genetic algorithms and neural networks with a description of the most commonly used criteria for optimality estimation. It is shown that the use of an expert approach based on fuzzy logic is applicable both in control of various coordinates of information subsystems of robotic complexes, and in control of the power switches of their energy subsystems. In the review of publications, the main attention was given to sources containing comparison with traditional approaches to control, as well as sources in which theoretical studies are supported by experiments involving various electromechanical plants. The paper may be useful to specialists and researchers in the field of control of various technical devices.

Keywords: fuzzy controller, fuzzy logic, motion control, intelligence system, robotics, adaptive control, genetic algorithm

Acknowledgements. This work was financially supported by Government of Russian Federation, Grant 08-08.

References
 1. Vasiliev V.N., Tomasov V.S., Shargorodsky V.D., Sadovnikov M.A. Precision electric drive systems used in high accuracy complexes of watching for space objects, current statement and development prospects. Izv. vuzov. Priborostroenie, 2008, vol. 51, no. 6, pp. 5–12. (in Russian)
2. Zadeh L.A. Fuzzy sets. Information and Control, 1965, vol. 8, no. 3, pp. 338–353. doi: 10.1016/s0019-9958(65)90241-x
3. Zadeh L.A. Fuzzy algorithm. Information and Control, 1968, vol. 12, no. 2, pp. 94–102. doi: 10.1016/s0019-9958(68)90211-8
4. Zadeh L.A. Similarity relations and fuzzy orderings. Information Science, 1971, vol. 3, no. 2, pp. 177–200. doi: 10.1016/s0020-0255(71)80005-1
5. Zadeh L.A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man, and Cybernetics, 1973, vol. SMC-3, no. 1, pp. 28–44. doi: 10.1109/tsmc.1973.5408575
6. Zadeh L.A. The concept of a linguistic variable and its application to approximate reasoning – I. Information Sciences, 1975, vol. 8, no. 3, pp. 199–249. doi: 10.1016/0020-0255(75)90036-5
7. Mamdani E.H. Application of fuzzy algorithms for simple dynamic plant. Proc. Institution of Electrical Engineers, 1974, vol. 121, no. 12, pp. 1585–1588. doi: 10.1049/piee.1974.0328
8. Mamdani E.H., Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 1975, vol. 7, no. 1, pp. 1–13. doi: 10.1016/s0020-7373(75)80002-2
9. King P.J., Mamdani E.H. The application of fuzzy control systems to industrial process. Automatica, 1977, vol. 13, no. 3, pp. 235–242. doi: 10.1016/0005-1098(77)90050-4
10. Pappis C.P., Mamdani E.H. A fuzzy logic controller for a traffic junction. IEEE Transactions on Systems, Man, and Cybernetics, 1977, vol. 7, no. 10, pp. 707–717. doi: 10.1109/tsmc.1977.4309605
11. Sugeno M. (ed.) Industrial Applications of Fuzzy Control. New York, Elsevier, 1985.
12. Takagi T., Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 1985, vol. SMC-15, no. 1, pp. 116–132. doi: 10.1109/TSMC.1985.6313399
13. Sugeno M., Nishida M. Fuzzy control of model car. Fuzzy Sets and Systems, 1985, vol. 16, no. 2, pp. 103–113. doi: 10.1016/s0165-0114(85)80011-7
14. Tanaka K., Sugeno M. Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems, 1992, vol. 45, no. 2, pp. 135–156. doi: 10.1016/0165-0114(92)90113-i
15. Sugeno M., Yasukawa T. A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems, 1993, vol. 1, no. 1, pp. 7–31. doi: 10.1109/tfuzz.1993.390281
16. Sugeno M. On stability of fuzzy systems expressed by fuzzy rules with singleton consequents. IEEE Transactions on Fuzzy Systems, 1999, vol. 7, no. 2, pp. 201–224. doi: 10.1109/91.755401
17. Taniguchi T., Sugeno M. Stabilization of nonlinear systems based on piecewise Lyapunov functions. Proc. 13th IEEE Int. Conf. on Fuzzy Systems. Budapest, Hungary, 2004, pp. 1607–1612. doi: 10.1109/fuzzy.2004.1375420
18. Wang P.P., Ruan D., Kerre E.E. Fuzzy Logic. A Spectrum of Theoretical and Practical Issues. Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-71258-9
19. Trillas E., Eciolaza L. Fuzzy Logic An Introductory Course for Engineering Students. Springer, 2015. doi: 10.1007/978-3-319-14203-6
20. Harris J. Fuzzy Logic Applications in Engineering Science. Springer, 2006. doi: 10.1007/1-4020-4078-4
21. Demidova G.L., Kuzin А.Yu., Lukichev D.V. Application features of fuzzy controllers on example of DC motor speed control. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 5, pp. 872–878. doi: 10.17586/2226-1494-2016-16-5-872-878
22. Guo L., Hung J.Y., Nelms R.M. Evaluation of DSP-based PID and fuzzy controllers for DC–DC converters. IEEE Transactions on Industrial Electronics, 2009, vol. 56, no. 6, pp. 2237–2248. doi: 10.1109/TIE.2009.2016955
23. Preeti M., Beniwal N.S. Comparison of conventional and fuzzy P/PI/PD/PID controller for higher order non linear plant with high dead time. International Journal of Scientific and Research Publications, 2012, vol. 2, no. 8, pp. 377–382.
24. Lin P.H., Hwang S., Chou J. Comparison on fuzzy logic and PID controls for a DC motor position controller. IEEE Industry Applications Society Annual Meeting, 1994, vol. 3, pp. 1930–1935. doi: 10.1109/IAS.1994.377695
25. Santos M., Dormido S., de la Cruz J.M. Fuzzy-PID controllers vs. fuzzy-PI controllers. Proc. IEEE 5th Int. Fuzzy Systems, 1996, vol. 3, pp. 1598–1604. doi: 10.1109/FUZZY.1996.552571
26. Lukichev D.V., Demidova G.L. Fuzzy control system of positioning servo drives of elastic coupling rotary supports. Vestnik ISPU, 2013, no. 6, pp. 60–64. (in Russian)
27. Wang Q., Liang D., Du J. Design of mining flameproof voltage stabilizing transformer adopting adaptive fuzzy PID controller. Proc. 17th Int. Conf. on Electrical Machines and Systems, ICEMS, 2014, pp. 678–681. doi: 10.1109/ICEMS.2014.7013554
28. Lukichev D.V., Demidova G.L., Brock S. Fuzzy adaptive PID control for two-mass servo-drive system with elasticity and friction. Proc. IEEE 2nd Int. Conf. on Cybernetics, CYBCONF, 2015, pp. 443–448. doi: 10.1109/CYBConf.2015.7175975
29. Lukichev D.V., Demidova G.L. PID-type fuzzy adaptive control for two-mass servo-drive system: Design, simulation and experiment. Proc. IX Int. Conf. on Power Drives Systems, ICPDS, 2016, pp. 1–5. doi: 10.1109/ICPDS.2016.7756679
30. Ivanchenko A.Ya. The use of adaptive tuning of proportional-integral-differential controller for antenna radar controlling. Trudy MAI, 2013, no. 66, p. 19. (in Russian)
31. Kandiban R., Arulmozhiyal R. Speed control of BLDC motor using adaptive fuzzy PID controller. Procedia Engineering, 2012, vol. 38, pp. 306–313. doi: 10.1016/j.proeng.2012.06.039
32. Brehm T., Rattan. K.S. Hybrid fuzzy logic PID controller. Proc. IEEE 1993 National Aerospace and Electronics Conference, 1993, vol. 2, pp. 807–813 doi: 10.1109/NAECON.1993.290839
33. Li W. Design of a hybrid fuzzy logic proportional plus conventional integral-derivative controller. IEEE Transactions on Fuzzy Systems, 1998, vol. 6, no. 4, pp. 449–463. doi: 10.1109/91.728430
34. Li W., Chang X.G., Farrell J., Wahl F.M. Design of an enhanced hybrid fuzzy P+ID controller for a mechanical manipulator. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2001, vol. 31, no. 6, pp. 938–945. doi: 10.1109/3477.969497
35. Cortajarena J.A., De Marcos J., Alvarez P., Vicandi F.J., Alkorta P. Indirect vector controlled induction motor with four hybrid P+fuzzy PI controllers. Proc. IEEE International Symposium on Industrial Electronics, 2007, pp. 197–202. doi: 10.1109/ISIE.2007.4374598
36. Vindhya V., Reddy V. PID-fuzzy logic hybrid controller for a digitally controlled DC-DC converter. Proc. Int. Conf. on Green Computing, Communication and Conservation of Energy, ICGCE, 2013, pp. 362–366. doi: 10.1109/ICGCE.2013.6823461
37. Utkin V.I. Sliding Modes and their Application in Variable Structure Systems. Moscow, Nauka Publ., 1974, 272 p. (in Russian)
38. Palm R. Robust control by fuzzy sliding mode. Automatica, 1994, vol. 30, no. 9, pp. 1429–1437. doi: 10.1016/0005-1098(94)90008-6
39. Bonivento C., Fantuzzi C., Martin L. Adaptive fuzzy logic controller synthesis via a sliding mode approach. Proc. European Control Conference, 1995, ECC 95, vol. 2.
40. Glower J.S., Munighan J. Designing fuzzy controllers from a variable structures standpoint. IEEE Transactions on Fuzzy Systems, 1997, vol. 5, no. 1, pp. 138–144. doi: 10.1109/91.554460
41. Wang K.J. Fuzzy sliding mode joint impedance control for a tendon-driven robot hand performing peg-in-hole assembly. Proc. IEEE Int. Conf. on Robotics and Biomimetics, ROBIO, 2016, pp. 2087–2092. doi: 10.1109/ROBIO.2016.7866637
42. Wen S., Chen M.Z.Q., Zeng Z., Huang T., Li C. Adaptive neural-fuzzy sliding-mode fault-tolerant control for uncertain nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, vol. 47, no. 8, pp. 2268–2278. doi: 10.1109/TSMC.2017.2648826
43. Song X., Song S. Fuzzy sliding mode control for fractional-order unified chaotic system. Proc. IEEE Int. Conf. on Information and Automation, 2016, pp. 1090–1095. doi: 10.1109/ICInfA.2016.7831981
44. Nigam V., Hussain S., Agarwal S.N. A hybrid fuzzy sliding mode controller for a BLDC motor drive. Proc. IEEE 1st Int. Conf. on Power Electronics, Intelligent Control and Energy Systems, 2016, pp. 1–4. doi: 10.1109/ICPEICES.2016.7853249
45. Fogel D.B., Liu D., Keller J.M. Fundamentals of Computational Intelligence: Neural Networks, Fuzzy Systems, and Evolutionary Computation. Wiley, IEEE Press, 2016, 378 p. doi: 10.1002/9781119214403
46. Jang J.-S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 1993, vol. 23, no. 3, pp. 665–685. doi: 10.1109/21.256541
47. Jang J.-S.R., Sun C.T. Neuro-fuzzy modeling and control. Proceedings of the IEEE, 1995, vol. 83, no. 3, pp. 378–406. doi: 10.1109/5.364486
48. Jang J.-S.R., Sun C.-T. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, 1997.
49. Massoum A., Chiali E.M., Massoum S., Attou A., Meroufel A. Neuro-fuzzy control of an input output linearization of a permanent magnet synchronous machine fed by a three levels inverter. Proc. 4th Int. Conf. on Power Engineering, Energy and Electrical Drives, 2013, pp. 92–96. doi: 10.1109/PowerEng.2013.6635587
50. Singh M., Chandra A. Real-time implementation of ANFIS control for renewable interfacing inverter in 3P4W distribution network. IEEE Transactions on Industrial Electronics, 2013, vol. 60, no. 1, pp. 121–128. doi: 10.1109/TIE.2012.2186103
51. Kaminski M., Szabat K. Neuro-fuzzy state space controller for drive with elastic joint. Proc. 11th Int. Conf. on Power Electronics and Drive Systems, 2015, pp. 373–378. doi: 10.1109/PEDS.2015.7203559
52. Gladkov L.A., Kureichik V.V., Kureichik V.M. Genetic Algorithms. Moscow, Fizmatlit Publ., 2006, 320 p. (in Russian)
53. Kureichik V.V., Kureichik V.M., Rodzin S.I. Theory of Evolutional Computations. Moscow, Fizmatlit Publ., 2012, 260 p. (in Russian)
54. Rubaai A., Castro-Sitiriche M.J., Ofoli A.R.. DSP-based laboratory implementation of hybrid fuzzy-PID controller using genetic optimization for high-performance motor drives. IEEE Transactions on Industry Applications, 2008, vol. 44, no. 6, pp. 1977–1986. doi: 10.1109/TIA.2008.2006347
55. Gu Deying, Xia Rui. The speed control of brushless DC motor based on fuzzy genetic algorithm. Proc. 25th Chinese Control and Decision Conference. Guiyang, China, 2013. doi: 10.1109/ccdc.2013.6561598
56. Oh W.S., Kim Y.T., Kim C.S., Kwon T.S., Kim H.J. Speed control of induction motor using genetic algorithm based fuzzy controller. Proc. 25th Annual Conference of the IEEE Industrial Electronics Society, 1999, pp. 625–629. doi: 10.1109/IECON.1999.816464
57. Choi H.H., Yun H.M., Kim Y. Implementation of evolutionary fuzzy PID speed controller for PM synchronous motor. IEEE Transactions on Industrial Informatics, 2015, vol. 11, no. 2, pp. 540–547. doi: 10.1109/TII.2013.2284561
58. Devaraj D., Selvabala B. Real-coded genetic algorithm and fuzzy logic aP. roach for real-time tuning of proportional-integral-derivative controller in automatic voltage regulator system. IET Generation, Transmission and Distribution, 2009, vol. 3, no. 7, pp. 641–649. doi: 10.1049/iet-gtd.2008.0287
59. Drozdz K. Estimation of the mechanical state variables of the two-mass system using fuzzy adaptive Kalman filter - Experimental study. Proc. IEEE 2nd Int. Conf. on Cybernetics. Gdynia, Poland, 2015, pp. 455–459. doi: 10.1109/CYBConf.2015.7175977
60. Wrobel K. Multilayer soft switchable predictive speed controller for the drive with elastic coupling. Proc. IEEE 2nd Int. Conf. on Cybernetics. Gdynia, Poland, 2015, pp. 439–442. doi: 10.1109/CYBConf.2015.7175974
61. Karnik N.N., Mendel J.M. Centroid of a type-2 fuzzy set. Information Sciences, 2001, vol. 132, no. 1-4, pp. 195–220. doi: 10.1016/s0020-0255(01)00069-x
62. Wu D., Mendel J.M. Designing practical interval type-2 fuzzy logic systems made simple. Proc. IEEE Int. Conf. on Fuzzy Systems, 2014, pp. 800–807. doi: 10.1109/fuzz-ieee.2014.6891534
63. Begian M.B., Melek W.W., Mendel J.M. Stability analysis of type-2 fuzzy systems. Proc. IEEE Int. Conf. on Fuzzy Systems, 2008, pp. 947–953. doi: 10.1109/fuzzy.2008.4630483
64. Zhai D., Mendel J.M. Computing the centroid of a general type-2 fuzzy set by means of the centroid-flow algorithm. IEEE Transactions on Fuzzy Systems, 2011, vol. 19, no. 3, pp. 401–422. doi: 10.1109/tfuzz.2010.2103076
65. Zhai D., Mendel J.M. Enhanced centroid-flow algorithm for computing the centroid of general type-2 fuzzy sets. IEEE Transactions on Fuzzy Systems, 2012, vol. 20, no. 5, pp. 939–956. doi: 10.1109/tfuzz.2012.2190075
66. Mazandarani M., Najariyan M. Differentiability of type-2 fuzzy number-valued functions. Communications in Nonlinear Science and Numerical Simulation, 2014, vol. 19, no. 3, pp. 710–725. doi: 10.1016/j.cnsns.2013.07.002
67. Wrobel K. Fuzzy adaptive control of nonlinear two-mass system. Power Electronics and Drives, 2016, vol. 1, no. 2, pp. 133–146.
68. Hagras H. Type-2 FLCs: a new generation of fuzzy controllers. IEEE Computational Intelligence Magazine, 2007, vol. 2, no. 1, pp. 30–43. doi: 10.1109/mci.2007.357192
69. Tanaka K., Hori T., Wang H.O. A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Transactions on Fuzzy Systems, 2003, vol. 11, no. 4, pp. 582–589. doi: 10.1109/tfuzz.2003.814861
70. Tanaka K., Hiroto Y., Hiroshi O., Wang H.O. A sum of squares approach to stability analysis of polynomial fuzzy systems. Proc. American Control Conference, 2007, pp. 4071–4076. doi: 10.1109/ACC.2007.4282579
71. Chen Y.J., Ohtake H., Tanaka K., Wang W.J., Wang H.O. Relaxed stabilization criterion for T–S fuzzy systems by minimum-type Piecewise-Lyapunov-function-based switching fuzzy controller. IEEE Transactions on Fuzzy Systems, 2012, vol. 20, no. 6, pp. 1166–1173. doi: 10.1109/TFUZZ.2012.2196049
72. Ohtake H., Machida S., Tanaka K., Wang H.O. A descriptor system approach to servo control for nonlinear systems. Proc. IEEE Int. Conf. on Fuzzy Systems, 2012, pp. 1–6. doi: 10.1109/FUZZ-IEEE.2012.6251284
73. Esterhuizen W., Wang H.O., Tanaka K., Wang X. Stability and stabilization conditions for Takagi-Sugeno fuzzy model via polyhedral Lyapunov functions. Proc. American Control Conference, 2013, pp. 5637–5642. doi: 10.1109/ACC.2013.6580720
74. Chen Y.J., Tanaka M., Tanaka K., Wang H.O. Piecewise polynomial lyapunov functions based stability analysis for polynomial fuzzy systems. Proc. IEEE Int. Conf. on Control System, Computing and Engineering, 2013, pp. 34–39. doi: 10.1109/ICCSCE.2013.6719928
75. Chen Y.J., Tanaka M., Tanaka K., Wang H.O. Stability analysis and region-of-attraction estimation using piecewise polynomial Lyapunov functions: polynomial fuzzy model approach. IEEE Transactions on Fuzzy Systems, 2015, vol. 23, no. 4, pp. 1314–1322. doi: 10.1109/TFUZZ.2014.2347993
76. Goryushkin V.A. On stability of fuzzy control systems. Bulletin KRASEC. Physical and Mathematical Sciences, 2011, no. 1, pp. 17–25. (in Russian)
77. Goryushkin V.A. On stabilizing controller design for fuzzy system with uncertainty. Bulletin KRASEC. Physical and Mathematical Sciences, 2011, no. 2, pp. 5–11. (in Russian)


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика