doi: 10.17586/2226-1494-2019-19-3-417-425


SILICON SURFACE MICROSTRUCTURING BY SINGLE-EXPOSURE FEMTOSECOND DOUBLE LASER PULSE

E. V. Kuzmin, D. S. Polyakov, A. A. Samokhvalov, G. D. Shandybina


Read the full article  ';
Article in russian

For citation:
Kuzmin E.V., Polyakov D.S., Samokhvalov A.A., Shandybina G.D. Silicon surface microstructuring by single-exposure femtosecond double laser pulse. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 3, pp. 417–425 (in Russian). doi: 10.17586/2226-1494-2019-19-3-417-425


Abstract
Subject of Research. The paper evaluates the possibility of periodic microstructures formation on the silicon surface by single-exposure double femtosecond laser pulse. Method. We used experimental method of double femtosecond laser pulses based on the Michelson interferometer and theoretical numerical simulation method of semiconductor photoexcitation process in the dielectric constant approximation. Main Results. Experimental results are presented on the monocrystalline silicon surface irradiation with one double femtosecond laser pulse near the ablation threshold at various time delays. Obtained optical images of the laser-irradiated silicon surface are analyzed and the results are compared with the results of photoexcitation process theoretical simulation in semiconductor based on the polariton theory concepts. The problematic nature of the periodic surface microstructures formation on silicon by a single femtosecond laser pulse is demonstrated. Practical Relevance. This study is useful when choosing industrially advantageous high-frequency modes of semiconductor surface femtosecond microstructuring.

Keywords: surface electromagnetic wave, femtosecond microstructuring, monocrystalline silicon

Acknowledgements. This work was supported by the RFBR Grant No.18-32-00839.

References
1. Shneider Yu.G. Maintenance Properties of Components with a Regular Microrelief. Leningrad, Mashinostroenie Publ., 1982, 247 p.
2. Gusev A.I. Nanomaterials, Nanostructures, Nanotechnologies. Moscow, Fizmatlit Publ., 2005, 416 p. (in Russian)
3. Nayak B.K., Mool C.G. Ultrafast laser-induced self-organized conical micro/ nano surface structures and their origin. Optics and Lasers in Engineering, 2010, vol. 48, no. 10, pp. 966–973. doi: 10.1016/j.optlaseng.2010.05.009
4. Ming Z., Yin G., Zhu J-T., Zhao L. Picosecond pulse laser microstructuring of silicon. Chinese Physics Letters, 2003, vol. 10, pp. 1789–1791. doi.: 10.1088/0256-307X/20/10/338
5. Chichkov B.N., Momma C., Nolte S., von Alvensleben F., Tunnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A, 1996, vol. 63, no. 2, pp. 109–115. doi: 10.1007/BF01567637
6. Kautek W., Kruger J. Femtosecond pulse laser ablation of metallic, semiconducting, ceramic and biological materials. Proc. SPIE, 1994, vol. 2207, pp. 600–611. doi: 10.1117/12.184768
7. Her T., Finlay R.J., Wu C., Deliwala S., Mazur E. Micro- structuring of silicon with femtosecond laser pulses. Applied Physics Letters, 1998, vol. 73, no. 12, pp. 1673–1675. doi: 10.1063/1.122241
8. Sarnet T., Carey J., Mazur E. From black silicon to photovoltaic cells, using short pulse lasers. AIP Conference Proceedings, 2012, vol. 1464, pp. 219. doi: 10.1063/1.4739876
9. Dolgaev S.I., Lavrishev S.V., Lyalin A.A., Simakin A.V., Voronov V.V., Shafeev G.A. Formation of conical microstructures upon laser evaporation of solids. Applied Physics A, 2001, vol. 73, no. 2, pp. 177–181. doi: 10.1007/s003390100530
10. Cunha A., Serro A.P., Oliveira V., Almeida A., Vilar R., Durrieu M. Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces. Applied Surface Science, 2013, vol. 265, pp. 688–696. doi: 10.1016/j.apsusc.2012.11.085
11. Bonch-Bruevich A.M., Kochengina M.K., Libenson M.N., Makin V.S., Pudkov S.D., Trubaev V.V. Excitation of surface and waveguide modes with intense laser radiation and their influence on the nature of surface destruction of condensed media. Izvestiya AN SSSR. seriya Fizika, 1982, vol. 46, no. 6, pp. 1186–1193 (in Russian).
12. Emel'yanov V.I., Zemskov E.M., Seminogov V.N. Theory of formation of surface gratings under the action of laser radiation on surfaces of metals, semiconductors, and insulators. Soviet Journal of Quantum Electronics, 1983, vol. 13, no. 12, pp. 1556– 1561. doi: 10.1070/QE1983v013n12ABEH004989
13. Guk I.V., Kuzmin E.V., Shandybina G.D., Yakovlev E.B., Dyukin R.V., Kulagin V.S. Influence of multi-pulse action on the evolution of silicon microrelief under femtosecond laser irradiation. Journal of Optical Technology, 2017, vol. 84, no. 7, pp. 462–466. doi: 10.1364/JOT.84.000462
14. Fraggelakis F., Mincuzzi G., Lopez J., Manek-Honninger I., Kling R. Texturing metal surface with MHz ultra-short laser pulses. Optics Express, 2017, vol. 25, no. 15, pp. 18131–18139. doi: 10.1364/OE.25.018131
15. Bonse J., Baudach S., Kruger J., Kautek W., Lenzner M. Femtosecond laser ablation of silicon-modification thresholds and morphology. Applied Physics A, 2002, vol. 74, no. 1, pp. 19– 25. doi: 10.1007/s003390100893
16. Shugaev M.V., Gnilitskyi I., Bulgakova N.M., Zhigilei L.V. Mechanism od single-pulse ablative generation of laser-induced periodic surface structures. Physical Review B, 2017, vol. 96, no. 20, p. 205429. doi: 10.1103/PhysRevB.96.205429
17. Polyakov D. S., Yakovlev E. B. Modelling of heating and photo- excitation of single-crystal silicon under multipulse irradiation by a nanosecond laser at 1.06 μm. Quantum Electronics, 2018, vol. 48, no. 3, pp. 255–262. doi: 10.1070/QEL16526
18. Polyakov D.S., Yakovlev E.B. Influence of Burstein-Moss effect on photoexcitation and heating of silicon by short and ultrashort laser pulses at wavelength 1.06 μm. Applied Physics A, 2018, vol. 124, no. 12, p. 803. doi: 10.1007/s00339-018-2225-x
19. Derrien T. J-Y., Kruger J., Itina T.E., Holm S., Rosenfeld A., Bonse J. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon. Optics Express, 2013, vol. 21, no. 24, pp. 29643–29655. doi: 10.1364/OE.21.029643
20. Aktsipetrov O.A., Baranova I.M., Evtyukhov K.N. Nonlinear Optics of Silicon and Silicon Nanostructures. Moscow, Fizmatlit Publ., 2012, 544 p. (in Russian)
21. Sokolowski-Tinten K., von der Linde D. Generation of dense electron-hole plasmas in silicon. Physical Review B, 2000, vol. 61, no. 4, pp. 2643–2650. doi: 10.1103/PhysRevB.61.2643
22. Libenson M. N. Laser-Induced Optical and Thermal Processes in Condensed Matter and Their Mutual Influence. St. Petersburg, Nauka Publ., 2007, 423 p. (in Russian)
23. Libenson M.N., Rumyantsev A.G. Light excitation of cylindrical surface electromagnetic waves. Optics and Spectroscopy, 1986, vol. 60, no. 4, p. 675.
24. Bonse J., Kruger J. Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon. Journal of Applied Physics, 2010, vol. 108, no. 3, p. 034903. doi: 10.1063/1.3456501
25. Tull B.R., Carey J.E., Mazur E., McDonald J.P., Yalisove S.M. Silicon surface morphologies after femtosecond laser irradiation. MRS Bulletin, 2006, vol. 31, no. 8, pp. 626–633. doi: 10.1557/mrs2006.160
26. Gurevich E.L. On the influence of surface plasmon- polariton waves on pattern formation upon laser ablation. Applied Surface Science, 2013, vol. 278, pp. 52–56. doi: 10.1016/j.apsusc.2013.01.103


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика