doi: 10.17586/2226-1494-2019-19-4-574-585


METHODS OF MECHANICAL NOISE IMPACT SUPPRESSION DURING STREAMER TOWING PROCESS USING FIBER BRAGG GRATINGS

A. A. Vlasov, A. S. Aleynik, M. Y. Plotnikov, A. A. Dmitriev, S. V. Varzhel


Read the full article  ';
Article in Russian

For citation:
Vlasov A.A., Aleynik A.S., Plotnikov M.Yu., Dmitriev A.A., Varzhel S.V. Methods of mechanical noise impact suppression during streamer towing process using fiber Bragg gratings. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 4, pp. 574–585 (in Russian).
doi: 10.17586/2226-1494-2019-19-4-574-585


Abstract

Subject of Research. The paper deals with the problem of seismic streamers towing process during marine geological exploration. Classification of the mechanical noise effects during towing process is presented. A brief overview of the main technical solutions is performed for suppression of each impact type. Method. A method is proposed for calculating the parameters of elastic sections for suppression of noise effects, which takes into account towed body tension level. We show the possibility and prospects of applying for this purpose a fiber-optic strain measurement system based on Bragg gratings inscribed in the G.657.A1 standard SMF-28 telecommunication optical fiber with a sampling rate of 5 kHz as part of a fiber-optic seismic streamer design. Main Results. Experimental data on the prototype research are given. With the relative elongation of the uniform-strength bar in the range up to 1030 μm/m, an average sensitivity of 0.68 pm (μm/m) is achieved, and the spread of values is ±1 pm. It is shown that the work of fiber Bragg gratings is practically non-inertial itself. The response time and dynamic range of the sensor amplitude is largely determined by the properties of metal bars and tool set where optical fibers are fixed. Practical Relevance. Application of the method provides opportunities for the solid construction of the towed body. The possibilities for calculation of the elastic section parameters to the specific conditions of marine geological exploration and continuous state monitoring of the towed body are presented. The method makes it possible to control the quality of the recorded seismic data and partially compensate the undesirable effects during signal processing. Proposed measures will increase significantly the accuracy and reliability of the obtained geological data.


Keywords: fiber-optical towed streamer, seismology exploration, noise impacts, fiber Bragg grating, quality control

Acknowledgements. This work was supported by the Ministry of Education and Science of the Russian Federation (The unique identifier of the project No. 03.G25.31.0245)

References
  1. Bogoyavlensky V.I., Bogoyavlensky I.V. Development of oil and gas fields in the Arctic seas and other Russian offshore areas. Vestnik of MSTU, 2015, vol. 18, no. 3, pp. 377–385. (in Russian)
  2. Laverov N.P., Bogoyavlensky V.I., Bogoyavlensky I.V. Fundamental aspects of the rational development of oil and gas resources of the Arctic and Russian shelf: strategy, prospects and challenges. The Arctic: Ecology and Economy, 2016, no. 2, pp. 4–13. (in Russian)
  3. Gurvich I.I. Seismic Survey. Moscow, Gosgeoltekhizdat Publ., 1954, 354 p. (in Russian)
  4. Pallayil V. Ceramic and fibre optic hydrophone as sensors for lightweight arrays–A comparative study. Proc. OCEANS 2017-Anchorage. Anchorage, USA, 2017, pp. 1–13.
  5. Nikitenko A.N., Plotnikov M.Yu., Volkov A.V. et al. PGC-Atan demodulation scheme with the carrier phase delay compensation for fiber-optic interferometric sensors. IEEE Sensors Journal, 2018, vol. 18, no. 5, pp. 1985–1992. doi: 10.1109/jsen.2018.2792540
  6. Plotnikov M.J., Kulikov A.V., Strigalev V.E., Meshkovsky I.K. Dynamic range analysis of the phase generated carrier demodulation technique. Advances in Optical Technologies, 2014, vol. 2014, art. 815108. doi: 10.1155/2014/815108
  7. Plotnikov M.Y. et al. Thin cable fiber-optic hydrophone array for passive acoustic surveillance applications. IEEE Sensors Journal, 2019. (in press)
  8. Beverini N., Falciai R., Maccioni E. et al. Developing fiber lasers with Bragg reflectors as deep sea hydrophones. Annals of Geophysics, 2006, vol. 49, no. 6. doi: 10.4401/ag-3097
  9. Beverini N., Firpi S., Guerrini P. et al. Fiber laser hydrophone for underwater acoustic surveillance and marine mammals monitoring. LAT 2010: International Conference on Lasers, Applications, and Technologies, 2011, vol. 7994. doi: 10.1117/12.880973 
  10. Launay F.X. et al. Acoustic antenna based on fiber laser hydrophones. Proc. 23rd Int. Conf. on Optical Fibre Sensors, 2014, vol. 9157. doi: 10.1117/12.963039
  11. Azmi A.I., Leung I., Chen X. et al. Fiber laser based hydrophone systems. Photonic Sensors, 2011, vol. 1, no. 3, pp. 210–221. doi: 10.1007/s13320-011-0018-3
  12. Hill D.J. et al. Fiber laser hydrophone array. Proceedings SPIE, 1999, vol. 3860, pp. 55–67. doi: 10.1117/12.372963
  13. Bagnoli P.E. et al. Development of an erbium-doped fibre laser as a deep-sea hydrophone. Journal of Optics A: Pure and Applied Optics, 2006, vol. 8, no. 7, pp. S535–S539. doi: 10.1088/1464-4258/8/7/s36
  14. Foster S. et al. A fibre laser sensor seabed array. Proc. Acoustics, 2013, vol. 7004.
  15. Foster S., Tikhomirov A., Van Velzen J., Harrison J. Recent advances in fibre optic array technologies. Proc. Australian Acoustical Society Conference, 2012, pp. 678–683.
  16. Andrews Jr.D.E. Vibration Isolation Module for Towed Seismic Arrays.Patent US 5062085, 1991.
  17. FlorenceN.K. Aquatic Tow Rope with Shock Absorber. Patent US 3094096, 1963.
  18. Fitzpatrick H.M., Neville J.J., Thompson J., Boggs F.W. Vibration Isolation Module for Towed Cables. Patent US 3648226, 1972.
  19. Appling J. Vibration Isolation Module. PatentUS 4628851 A, 1986.
  20. Reynier R., Malcor J.G., Moresco G., Ramoger F. Vibration Damper for a Towed Body. Patent US 4762208, 1988.
  21. Mcgavern S.A. Cable Vibration Damper. Patent US 2969416, 1961.
  22. Miller H.A., Nichols C.S. Acoustic Envelope having Minimal Vibration and Flow Induced Noises. Patent US 4402069, 1983.
  23. Grinchenko V.T., Makarenkov A.P., Voskoboinik V.A. Hydrodynamic noise of a vertical drift antenna and means of their reduction. Hydroacoustic Journal, 2006, no. 3, pp. 17–24. (in Russian)
  24. Makarenkov A.P., Voskoboinik V.A. Hydrodynamic noises of a flexible extended towed antenna. Akusticheskiy Simpozium KONSONANS. Kiev, Ukraine, 2003, pp. 78–83. (in Russian)
  25. Kudashev E.B., Kenigsberger G.V. Experimental studies of turbulent pressure fluctuations in the Deep Sea. Proceedings of Kazan University. Physics and Mathematics Series, 2012, vol. 154, no. 3, pp. 82–90. (in Russian)
  26. Zakrevskii V.A., Pakhotin V.A. Effect of mechanically induced ionization processes in polymer insulators on the noise of cable sensors of physical fields. Journal of Communications Technology and Electronics, 2013, vol. 58, no. 1, pp. 56–61. doi: 10.1134/S1064226912100117 (in Russian)
  27. Grinchenko V.T., Makarenkov A.P., Voskoboinik V.A. Reduction of hydrodynamic noise by solutions of high-molecular polymers. Akusticheskii Vestnik, 2007, vol. 10, no. 2, pp. 33–42. (in Russian)
  28. Bazhenova L.A., Semenov A.G. On nature of vortex sound generated by streamlined cylinder.Memoirs of the Faculty of Physics, Lomonosov Moscow State University, 2014, no. 6, p. 146305 (in Russian)
  29. Makarenkov A.P., Voskoboinik V.A.. Reducing the hydrodynamic interference of antennas with vector receivers. Akusticheskiy Simpozium KONSONANS-2007. Kiev, Ukraine, 2007, pp. 169–175. (in Russian)
  30. Makarenkov A.P., Voskoboinik V.A., Smolyar V.V. Reciprocal characteristics of pseudo-sound pressure pulsations on the surface of a longitudinally streamlined cylinder. Akusticheskiy Simpozium KONSONANS-2015. Kiev, Ukraine, 2015, pp. 52–58. (in Russian)
  31. VanDerWalA. Systems and Methods of a Marine Geophysical Damper System. Patent US 20180052244 A1, 2017.
  32. HockerG.B. Fiber-optic sensing of pressure and temperature. Applied Optics, 1979, vol. 18, no. 9, pp. 1445–1448. doi: 10.1364/ao.18.001445
  33. McMahon G.W., Cielo P.G. Fiber optic hydrophone sensitivity for different sensor configurations. Applied Optics, 1979, vol. 18, no. 22, pp. 3720–3722. doi: 10.1364/ao.18.003720
  34. Lagakos N., Bush I.J., Cole J.H., Bucaro J.A., Skogen J.D., Hocker G.B. Acoustic desensitization of single-mode fibers utilizing nickel coatings. Optics Letters, 1982, vol. 7, no. 9, pp. 460. doi: 10.1364/ol.7.000460 
  35. Hocker G.B. Fiber-optic acoustic sensors with increased sensitivity by use of composite structures. Optics Letters, 1979, vol. 4, no. 10, pp. 320. doi: 10.1364/ol.4.000320
  36. Lagakos N., Bucaro J.A. Pressure desensitization of optical fibers. Applied Optics, 1981, vol. 20, no. 15, pp. 2716. doi: 10.1364/ao.20.002716
  37. Yang Y.-C., Lee H.-L., Chou H.-M. Elasto-optics in double-coated optical fibers indused by axial strain and hydrostatic pressure. Applied Optics, 2002, vol. 41, no. 10, pp. 1989. doi: 10.1364/ao.41.001989
  38. Lagakos N., Hickman T.R., Cole J.H., Bucaro I.A. Optical fibers with reduced pressure sensitivity. Optics Letters, 1981, vol. 6, no. 9, pp. 443. doi: 10.1364/ol.6.000443
  39. Lagakos N. et al. Optimizing fiber coatings for interferometric acoustic sensors. IEEE Transactions on Microwave Theory and Techniques, 1982, vol. 30, no. 4, pp. 529–535. doi: 10.1109/tmtt.1982.1131094
  40. Okano M., Kajimura K., Wakiyama S., Sakai F., Mizutani W., Ono M. Vibration isolation for scanning tunneling microscopy. Journal of Vacuum Science and Technology A, 1987, vol. 5, no. 6, pp. 3313–3320. doi: 10.1116/1.574189
  41. Vlasov A.A., Aleinik A.S., Plotnikov M.Yu., Ashirov A.N., Motorin E.A. Study of ways to improve the accuracy characteristics of fiber optic seismic streamer. Proc. Science and Innovations at Technical Universities. St. Petersburg, 2018, pp. 8–9. (in Russian)
  42. Vlasov A.A., Aleinik A.S., Motorin E.A., Plotnikov M.Yu., Volkovskii S.A. Ways to protect sensitive fiber-optic nodes from external noise and vibrations. Science and Innovations at Technical Universities. St. Petersburg, 2017, pp. 7–8. (inRussian)
  43. Vlasov A.A., Ashirov A.N., Aleinik A.S. Methods of fiber-optic interferometers protection from the effects of acoustic noise of the environment. Proc. 7th All-Russian Conf. on Noise and Vibration Protection, 2019.
  44. Vlasov A.A., Aleinik A.S., Ashirov A.N., Plotnikov M.Yu., Varlamov A.V. Fiber-optic cables with high acoustic insulation. Technical Physics Letters, 2019, vol. 45, no. 15, pp. 29. (in Russian)
  45. WillemsM. Active Damper System. Patent US 9545831, 2017.
  46. Badenoch S.W., Shal D., Fratini A.V., Connair K.M.Jr., Hamilton H.D. Vehicle Suspension Control with Compensation for Yaw Correcting Active Brake Control. Patent WO2000059747A1, 2000.
  47. Tamba R.T. Active Damping System. Patent WO2013120142A1, 2013.
  48. Cao Q., Jin L., Liang Y., CHENG L., GUAN B.-O. Compact dual-frequency fiber laser accelerometer with sub-μg resolution. Photonic Sensors, 2016, vol. 6, no. 2, pp. 115–120. doi: 10.1007/s13320-016-0315-y
  49. Budynas R.G. Shigley’s Mechanical Engineering Design. 10th ed. McGraw-Hill, 2014, 1104 p.
  50. Brilloin L. Wave Propagation in Periodic Structures. 2nd ed. Dover Phoenix Editions, 1946, 255 p.
  51. Paarmann L.D. Design and Analysis of Analog Filters. Kluwer, 2003, 453 p.
  52. Feodos'ev V.I. Strength of Materials. 10th ed. Moscow, MSTU named by Bauman, 1999, 592 p. (in Russian)
  53. Kashyap R. Fiber Bragg Gratings. San Diego, Academic Press, 1999, 459 p.
  54. Varzhel S.V. FiberBragg Gratings. St. Petersburg, ITMO University Publ., 2015, 65 p. (in Russian)
  55. Nellen M., Mauron P., Frank A., Sennhauser U., Bohnert K., Pequignot P., Bodor P., Brändle H. Reliability of fiber Bragg grating based sensors for downhole applications. Sensors and Actuators A: Physical, 2003, vol. 103, no. 3, pp. 364–376. doi: 10.1016/s0924-4247(02)00430-2
  56. Konnov K.A., Slozhenikina Yu.I., Gribaev A.I., Varzhel S.V., Novikova V.A., Zalesskaya Yu.K., Dmitriev A.A. Inscription process research and optimization for superimposed fiber Bragg gratings. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 6, pp. 1004–1010 (in Russian). doi: 10.17586/2226-1494-2017-17-6-1004-1010
  57. Yoon H.J., Costantini D.M., Limberger H.G., Salathe R.P., Kim C.-G., Michaud V. In situ strain and temperature monitoring of adaptive composite materials. Journal of Intelligent Material Systems and Structures, 2006, vol. 17, pp. 1059–1067. doi: 10.1177/1045389x06064889
  58. James S.W., Dockney M.L., Tatam R.P. Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors. Electronics Letters, 1996, vol. 32, no. 12, pp. 1133–1134.
  59. Novikova V.A., Varzhel S.V., Dmitriev A.A., Zalesskaya Yu.K., Idrisov R.F. Spectral characteristics study of phase-shifted fiber Bragg gratings under pressure applied perpendicular to fiber axis. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 5, pp. 751–757 (in Russian). doi: 10.17586/2226-1494-2018-18-5-751-757
  60. Mihailov S.J. Fiber Bragg grating sensors for harsh environments. Sensors, 2012, vol. 12, no. 2, pp. 1898–1918. doi: 10.3390/s120201898
  61. Gribaev A.I., Pavlishin I.V., Stam A.M., Idrisov R.F., Varzhel S.V., Konnov K.A. Laboratory setup for fiber Bragg gratings inscription based on Talbot interferometer. Optical and Quantum Electronics, 2016, vol. 48, no. 12. doi: 10.1007/s11082-016-0816-3
  62. Varlamov A.V., Kulikov A.V., Strigalev V.E., Varzhel' S.V., Aksarin S.M. Determination of optical losses at fiber joining with different modefield diameter.Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 2, pp. 23–26. (in Russian)


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика