doi: 10.17586/2226-1494-2019-19-966-972


INTERFERENCE OF MULTI-MODE WEAK COHERENT STATES FOR TWIN-FIELD QUANTUM COMMUNICATION APPLICATIONS

V. V. Chistiakov, A. A. Gaidash, A. V. Kozubov, A. V. Gleim


Read the full article  ';
Article in Russian

For citation:

Chistiakov V.V., Gaidash A.A., Kozubov A.V., Gleim A.V. Interference of multi-mode weak coherent states for twin-field quantum communication applications. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 6, pp. 966–972 (in Russian). doi: 10.17586/2226-1494-2019-19-6-966-972



Abstract

Subject of Research. We present the results of analytical research and experimental implementation of quantum key distribution protocol based on multi-mode weak coherent states with untrusted detection node. Such states are based on interference of phase-coded sidebands in case, where legitimate users are sending these states to the untrusted detection node that could be controlled by an eavesdropper. Method. The method of initial states generation is applied. Their propagation via fiber-optic lines and interference result is shown. A classical approximation is used for description. The experiment is carried out with the power measurement system connected on detection node side. We present the experimental scheme and show that in the classical regime the interference pattern is obtained at the fiber-optic 2x2 beam splitter with 50:50 ratio depending on the phase difference of the radiofrequency modulating signals (4.8 GHz) applied to LiNbO3 phase modulators, which modulate an optical carrier (1550 nm) in the blocks of legitimate users. Main Results. Experimental results are in accordance with analytical ones. Harmonical dependence of the optical power at the sidebands is obtained as an interference result. In this case, visibility of interference pattern is up to 97.4% and is good enough. Thus, application of these results in terms of quantum optics and experimentation in quantum single-photon regime might be a subject of future research. Practical Relevance. Practical application of research results lies in the development of quantum key distribution protocols and optical schemes with special attention to eavesdropping of quantum states and attacking the detection nodes. Application of the proposed multi-mode coherent states enables the legitimate users to extract information, while an eavesdropper does not obtain any information about encoded bits due to ambiguity of detection events.


Keywords: quantum communications, coherent states, interference, phase modulated radiation

Acknowledgements. This work was financially supported by the Government of the Russian Federation (Grant 08-08).

References
  1. Nielsen M.A., Chuang I.L. Quantum computation and quantum information. Cambridge University Press, 2000, 676 p.
  2. Jain N., Anisimova E., Khan I., Makarov V., Marquardt C., Leuchs G. Trojan-horse attacks threaten the security of practical quantum cryptography. New Journal of Physics, 2014, vol. 16, pp. 123030. doi: 10.1088/1367-2630/16/12/123030
  3. Makarov V., Hjelme D.R.Faked states attack on quantum cryptosystems. Journal of Modern Optics, 2005, vol. 52,no. 5, pp. 691–705. doi: 10.1080/09500340410001730986
  4. Lydersen L., Wiechers C., Wittmann C., Elser D., Skaar J., Makarov V. Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics, 2010, vol. 4, no. 10, pp. 686–689. doi: 10.1038/nphoton.2010.214
  5. Lydersen L., Akhlaghi M.K., Majedi A.H., Skaar J., Makarov V. Controlling a superconducting nanowire single-photon detector using tailored bright illumination. New Journal of Physics, 2011, vol. 13, pp. 113042. doi: 10.1088/1367-2630/13/11/113042
  6. Honjo T., Fujiwara M., Shimizu K., Tamaki K., Miki S., Yamashita T., Terai H., Wang Z., Sasaki M. Countermeasure against tailored bright illumination attack for DPS-QKD. Optics Express, 2013, vol. 21, no. 3, pp. 2667–2673. doi: 10.1364/OE.21.002667
  7. Koehler-Sidki A., Dynes J.F., LucamariniM., Roberts G.L., Sharpe A.W., Yuan Z.L., Shields A.J. Best-practice criteria for practical security of self-differencing avalanche photodiode detectors in quantum key distribution. Physical Review Applied, 2018, vol. 9, no. 4, pp. 044027. doi: 10.1103/PhysRevApplied.9.044027
  8. Lo H.-K., Curty M., Qi B. Measurement-Device-Independent Quantum Key Distribution. Physical Review Letters, 2012, vol. 108, no. 13, pp. 130503. doi: 10.1103/PhysRevLett.108.130503
  9. Liu Y., Chen T.-Y., Wang L.-J., Liang H., Shentu G.-L., Wang J., Cui K., Yin H.-L., Liu N.-L., Li L., Ma X., Pelc J.S., Fejer M.M., Peng C.-Z., Zhang Q., Pan J.-W. Experimental measurement-device-independent quantum key distribution. Physical Review Letters, 2013, vol. 111, no. 13, pp. 130502. doi: 10.1103/PhysRevLett.111.130502
  10. Mazurenko Yu.T., Merolla J.-M., Godgebur J.-P. Quantum transmission of information with the help of subcarrier frequency. Application to quantum cryptography. Optics and Spectroscopy, 1999, vol. 86, no. 2, pp. 145–147.
  11. Capmany J. Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems. Optics Express, 2009, vol. 17, no. 8, pp. 6457–6464. doi: 10.1364/OE.17.006457
  12. Capmany J., Ortigosa-Blanch A., Mora J., Ruiz-Alba A., Amaya W., Martínez A. Analysis of Subcarrier Multiplexed Quantum Key Distribution Systems: Signal, Intermodulation, and Quantum Bit Error Rate. IEEE Journal on Selected Topics in Quantum Electronic, 2009, vol. 15, no. 6, pp. 1607–1621. doi: 10.1109/JSTQE.2009.2031065
  13. Gleim A.V., Egorov V.I., Nazarov Y.V., Smirnov S.V., Chistyakov V.V., Bannik O.I., Anisimov A.A., Kynev S.M., Ivanova A.E., Collins R.J., Kozlov S.A., Buller G. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Optics express, 2016, vol. 24, no. 3, pp. 2619–2633. doi: 10.1364/OE.24.002619
  14. Gleim A.V., Chistyakov V.V., Bannik O.I., Egorov V.I., Buldakov N.V., Vasilev A.B., Gaidash A.A., Kozubov A.V., Smirnov S.V., Kynev S.M., Khoruzhnikov S.E., Kozlov S.A., Vasil'ev V.N. Sideband quantum communication at 1 Mbit/s on a metropolitan area network. Journal of Optical Technology, 2017, vol. 84, no. 6, pp. 362–367. doi: 10.1364/JOT.84.000362
  15. Gaidash A.A., Kozubov A.V., Chistyakov V.V., Miroshnichenko G.P., Egorov V.I., Gleim A.V. Security conditions for sub-carrier wave quantum key distribution protocol in errorless channel. Journal of Physics: Conference Series, 2017, vol. 917, no. 6, pp. 062014. doi: 10.1088/1742-6596/917/6/062014
  16. Kozubov A., Gaidash A., Miroshnichenko G. Finite-key security for quantum key distribution systems utilizing weak coherent states. arXiv preprint. arXiv:1903.04371, 2019.
  17. Miroshnichenko G.P., Kozubov A.V., Gaidash A.A., Gleim A.V., Horoshko D.B. Security of subcarrier wave quantum key distribution against the collective beam-splitting attack. Optics express, 2018, vol. 26, no. 9, pp. 11292–11308. doi: 10.1364/OE.26.011292
  18. Gaidash A., Kozubov A., Miroshnichenko G. Methods of decreasing the unambiguous state discrimination probability for subcarrier wave quantum key distribution systems. Journal of the Optical Society of America B: Optical Physics, 2019, vol. 36, no. 3, pp. B16–B19. doi: 10.1364/JOSAB.36.000B16
  19. Chistiakov V., Huang A., Egorov V., Makarov V. Controlling single-photon detector ID210 with bright light. Optics Express(in print).


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика