doi: 10.17586/2226-1494-2020-20-6-835-840


INFERRING OF REGULATORY NETWORKS FROM EXPRESSION DATA USING BAYESIAN NETWORKS

A. A. Loboda, A. A. Sergushichev


Read the full article  ';
Article in Russian

For citation:

Loboda A.A., Sergushichev A.A. Inferring of regulatory networks from expression data using Bayesian networks. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2020, vol. 20, no. 6, pp. 835-840 (in Russian). doi: 10.17586/2226-1494-2020-20-6-835-840



Abstract

Subject of Research.The paper considers the inferring of gene regulatory networks in the form of Bayesian networks from gene expression data. We present this problem as the problem of the marginal probability estimation for each edge appearance in the true Bayesian network under the known gene expression levels. Monte Carlo approach based on the Markov chains is proposed. Method. The proposed method involved the sampling of Bayesian network pairs and a discretization policy, providing a way for the network to be applied to continuous gene expression dataaccording to a posteriori distribution. The Markov chain Monte Carlo approach was used for sampling with implementation via the Metropolis-Hastings algorithm. Then, the desired probabilities were estimated based on the obtained sample. Main Results. The proposed method is tested on simulated data from the DREAM4 Challenges. Comparison with the leaders shows that the developed method quality surpasses the leader among the existing methods, the regularized gradient boosting machines method (RGBM), on some tests and is comparable on the othersin view of the results. At the same time, the proposed method is flexible enough and can be adapted to the other types of experimental data. Practical Relevance. The method is applicable in computational biology for research of the gene regulation mechanisms in various processes, including the tumor growth or the immune system operation.


Keywords: gene regulatory networks, Bayesian networks, discretization, Monte-Carlo methods, Markov chains

References
1. Csermely P., Ágoston V., Pongor S. The efficiency of multi-target drugs: the network approach might help drug design. Trends in Pharmacological Sciences, 2005, vol. 26, no. 4, pp. 178–182. doi: 10.1016/j.tips.2005.02.007
2. Schaffter T., Marbach D., Floreano D. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics, 2011, vol. 27, no. 16, pp. 2263–2270. doi: 10.1093/bioinformatics/btr373
3. Marbach D., Costello J.C., Küffner R., Vega N.M., Prill R.J., Camacho D.M., Allison K.R., Kellis M., Collins J.J., Aderhold A., Stolovitzky G., Bonneau R., Chen Y., Cordero F., Crane M., Dondelinger F., Drton M., Esposito R., Foygel R., De La Fuente A., Gertheiss J., Geurts P., Greenfield A., Grzegorczyk M., Haury A.-C., Holmes B., Hothorn T., Husmeier D., Huynh-Thu V.A., Irrthum A., Karlebach G., Lèbre S., De Leo V., Madar A., Mani S., Mordelet F., Ostrer H., Ouyang Z., Pandya R., Petri T., Pinna A., Poultney C.S., Rezny S., Ruskin H.J., Saeys Y., Shamir R., Sîrbu A., Song M., Soranzo N., Statnikov A., Vega N., Vera-Licona P., Vert J.-P., Visconti A., Wang H., Wehenkel L., Windhager L., Zhang Y., Zimmer R. Wisdom of crowds for robust gene network inference. Nature Methods, 2012, vol. 9, no. 8, pp. 796–804. doi: 10.1038/nmeth.2016
4. Friedman N., Linial M., Nachman I., Pe'er D. Using Bayesian networks to analyze expression data. Journal of Computational Biology, 2000, vol. 7, no. 3-4, pp. 601–620. doi: 10.1089/106652700750050961
5. Aghdam R., Ganjali M., Zhang X., Eslahchi C. CN: a consensus algorithm for inferring gene regulatory networks using the SORDER algorithm and conditional mutual information test. Molecular BioSystems, 2015, vol. 11, no. 3, pp. 942–949. doi: 10.1039/c4mb00413b
6. Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 2003, vol. 19, no. 17, pp. 2271–2282. doi: 10.1093/bioinformatics/btg313
7. Liu F., Zhang S.-W., Guo W.-F., Wei Z.-G., Chen L. Inference of gene regulatory network based on local bayesian networks. PLoS Computational Biology, 2016, vol. 12, no. 8, pp. e1005024. doi: 10.1371/journal.pcbi.1005024
8. Chen Y.-C., Wheeler T.A., Kochenderfer M.J. Learning discrete Bayesian networks from continuous data. Journal of Artificial Intelligence Research, 2017, vol. 59, pp. 103–132. doi: 10.1613/jair.5371
9. Buntine W. Theory refinement on Bayesian networks. Proc. 7th Conference on Uncertainty in Artificial Intelligence, 1991, pp. 52–60. doi: 10.1016/B978-1-55860-203-8.50010-3
10. Hastings W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1970, vol. 57, no. 1, pp. 97–109. doi: 10.1093/biomet/57.1.97
11. Chib S., Greenberg E. Understanding the metropolis-hastings algorithm. American Statistician, 1995, vol. 49, no. 4, pp. 327–335. doi: 10.1080/00031305.1995.10476177
12. Cormen T.H., Leiserson Ch.E., Rivest R.L., Stein C. Introduction to Algorithms. McGraw-Hill, 2003, 1056 p. 
13. Albert R. Scale-free networks in cell biology. Journal of Cell Science, 2005, vol. 118, no. 21, pp. 4947–4957. doi: 10.1242/jcs.02714
14. Mall R., Cerulo L., Garofano L., Frattini V., Kunji K., Bensmail H., Sabedot T.S., Noushmehr H., Lasorella A., Iavarone A., Ceccarelli M. RGBM: regularized gradient boosting machines for identification of the transcriptional regulators of discrete glioma subtypes. Nucleic Acids Research, 2018, vol. 46, no. 7, pp. e39. doi: 10.1093/nar/gky015
15. Petralia F., Wang P., Yang J., Tu Z. Integrative random forest for gene regulatory network inference. Bioinformatics, 2015, vol. 31, no. 12, pp. i197–i205. doi: 10.1093/bioinformatics/btv268


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика