doi: 10.17586/2226-1494-2021-21-6-880-886


Measurements of heat capacity and thermal conductivity of β-Ga2O3 and β-(AlxGa1–x)2O3 bulk crystals grown by the Czochralski method

D. A. Bauman, D. Y. Panov, V. A. Spiridonov, A. V. Kremleva, M. A. Odnoblyudov, A. V. Asach, V. A. Krylov, G. N. Isachenko, E. V. Tambulatova, V. E. Bougrov, A. E. Romanov


Read the full article  ';
Article in русский

For citation:
Bauman D.A., Panov D.Yu., Spiridonov V.A., Kremleva A.V., Odnoblyudov M.A., Asach A.V., Krylov V.A., Isachenko G.N., Tambulatova E.V., Bougrov V.E., Romanov A.E. Measurements of heat capacity and thermal conductivity of β-Ga2O3 and β-(AlxGa1–x)2O3 bulk crystals grown by the Czochralski method. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no. 6, pp. 880–886 (in Russian). doi: 10.17586/2226-1494-2021-21-6-880-886


Abstract
One of the application fields of bulk gallium oxide crystals is the manufacture of substrates for epitaxial growth of device structures for power electronics and optoelectronics in the Ga2O3/(AlxGa1–x)2O3 system. For most instrument designs, the substrate serves as a channel for heat removal from the device to an external heat sink. This property stresses the importance of information about the thermal characteristics of bulk crystals of gallium oxide and a solid solution of gallium and aluminum oxide, particularly about the heat capacity and thermal conductivity. In this work, we measured the heat capacity of bulk crystals of the β-modification of pure gallium oxide (β-Ga2O3) obtained by the Czochralski method, as well as of a double solid solution of gallium and alumina oxide β-(AlxGa1–x)2O3 in the range of temperatures from 25 °C to 480 °C and for various values of the Al concentration. Samples of bulk crystals were grown in an industrial installation “Nika-3” by pulling from the melt (Czochralski method). Further, the specific heat was measured on samples specially prepared from bulk crystals by differential scanning calorimetry. The thermal conductivity in the [010] crystallographic direction was measured by the method using a flat heat source (hot disk method). The dependence of the specific heat capacity of β-(AlxGa1–x)2O3 crystals on Al concentration was obtained for the atomic concentration of aluminum ranging from 0 (pure gallium oxide) to 9.11 at.%. The influence of the Al content on the heat capacity of the material is analyzed. The temperature dependence of the thermal conductivity of β-Ga2O3 in the [010] direction (direction of growth) in the temperature range from 43 °С to 120 °С was also obtained. The results of the study can be used to investigate the thermal properties of gallium oxide, as well as to solve the problem of heat removal for electronic devices based on gallium oxide.

Keywords: gallium oxide, bulk crystals, Czochralski method, heat capacity, thermal conductivity

Acknowledgements. This work was supported by the Russian Science Foundation, Project No. 19-19-00686.

References
  1. Janowitz C., Scherer V., Mohamed M., Krapf A., Dwelk H., Manzke R., Galazka Z., Uecker R., Irmscher K., Fornari R., Michling M., Schmeißer D., Weber J.R., Varley J.B., Walle C.G.V. Experimental electronic structure of In2O3 and Ga2O3New Journal of Physics, 2011, vol. 13, no. 8, pp. 085014. https://doi.org/10.1088/1367-2630/13/8/085014
  2. Mohamed H.F., Xia C., Sai Q., Cui H., Pan M., Qi H. Growth and fundamentals of bulk β-Ga2O3 single crystals. Journal of Semiconductors, 2019, vol. 40, no. 1, pp. 011801. https://doi.org/10.1088/1674-4926/40/1/011801
  3. Joishi C., Rafique S., Xia Z., Han L., Krishnamoorthy S., Zhang Y., Lodha S., Zhao H., Rajan S. Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes. Applied Physics Express, 2018, vol. 11, no. 3, pp. 031101. https://doi.org/10.7567/APEX.11.031101
  4. Higashiwaki M., Sasaki K., Kuramata A., Masui T., Yamakoshi S. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Applied Physics Letters, 2012, vol. 100, no. 1, pp. 013504. https://doi.org/10.1063/1.3674287
  5. Bauman D.A., Borodkin A.I., Petrenko A.A., Panov D.I., Kremleva A.V., Spiridonov V.A., Zakgeim D.A., Silnikov M.V., Odnoblyudov M.A., Romanov A.E., Bougrov V.E. On improving the radiation resistance of gallium oxide for space applications. Acta Astronautica, 2021, vol. 180, pp. 125–129. https://doi.org/10.1016/j.actaastro.2020.12.010
  6. Bauman D.A., Pyankova L.A., Kremleva A.V., Spiridonov V.A., Panov D. YU., Zakgeim D.A., Bakhvalov A.S., Odnoblyudov M.A., Romanov A.E., Bougrov V.E. Elemental and structural mapping of bulk crystals (AlxGa1–x)2O3 obtained by the Czochralski method. Pisʼma v Zhurnal tehnicheskoj fiziki, 2021, vol. 47, no. 5, pp. 19–22. (in Russian). https://doi.org/10.21883/PJTF.2021.05.50671.18580
  7. Bauman D.A., Panov D.Iu., Zakgeim D.A., Spiridonov V.A., Kremleva A.V., Petrenko A.A., Brunkov P.N., Prasolov N.D., Nashchekin A.V., Smirnov A.M., Odnoblyudov M.A., Bougrov V.E., Romanov A.E. High-quality bulk β-Ga2O3 and β-(AlxGa1–x)2O3 crystals: Growth and properties. Physica Status Solidi (A) Applications and Materials Science, 2021, vol. 218, no. 20, pp. 2100335. https://doi.org/10.1002/pssa.202100335
  8. Swinnich E., Dave Y.J., Pitman E.B., Broderick S., Mazumder B., Seo J.-H. Prediction of optical band gap of β-(AlxGa1–x)2O3 using material informatics. Materials Discovery, 2018, vol. 11, pp. 1–5. https://doi.org/10.1016/j.md.2018.06.001
  9. Feng Q., Li X., Han G., Huang L., Li F., Tang W., Zhang J., Hao Y. (AlGa)2O3 solar-blind photodetectors on sapphire with wider bandgap and improved responsivity. Optical Materials Express, 2017, vol. 7, no. 4, pp. 1240–1248. https://doi.org/10.1364/OME.7.001240
  10. Stepanov S.I., Nikolaev V.I., Bougrov V.E., Romanov A.E. Gallium oxide: properties and applica — a review. Reviews on Advanced Materials Science, 2016, vol. 44, no. 1, pp. 63–86.
  11. Vaca D., Yates L., Nepal N., Katzer D.S., Downey B.P., Wheeler V., Meyer D.J., Graham S., Kumar S. Thermal conductivity of β-Ga2O3 thin films grown by molecular beam epitaxy. Proc. of the 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2020, pp. 1011–1016. https://doi.org/10.1109/ITherm45881.2020.9190381
  12. Hidalgo-Ruiz J.L., Romero-González R., Martínez Vidal J.L., Garrido Frenich A. A rapid method for the determination of mycotoxins in edible vegetable oils by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chemistry, 2019, vol. 288, pp. 22–28. https://doi.org/10.1016/j.foodchem.2019.03.003
  13. Gustafsson S.E., Karawacki E., Khan M.N. Determination of the thermal-conductivity tensor and the heat capacity of insulating solids with the transient hot-strip method. Journal of Applied Physics, 1981, vol. 52, no. 4, pp. 2596–2600. https://doi.org/10.1063/1.329068
  14. He Y. Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations. Thermochimica Acta, 2005, vol. 436, no. 1-2, pp. 122–129. https://doi.org/10.1016/j.tca.2005.06.026
  15. Jiang P., Qian X., Li X., Yang R. Three-dimensional anisotropic thermal conductivity tensor of single crystalline β-Ga2O3Applied Physics Letters, 2018, vol. 113, no. 23, pp. 232105. https://doi.org/10.1063/1.5054573
  16. Sheludiak Iu.E., Kashporov L.Ia., Malinin L.A., Tcalkov V.N. Thermophysical Properties of Combustible Systems Components. Moscow, NPO Inform TEI Publ., 1992, 184 p. (in Russian)
  17. Galazka Z., Irmscher K., Uecker R., Bertram R., Pietsch M., Kwasniewski A., Naumann M., Schulz T., Schewski R., Klimm D., Bickermann M. On the bulk β-Ga2O3 single crystals grown by the Czochralski method. Journal of Crystal Growth, 2014, vol. 404, pp. 184–191. https://doi.org/10.1016/j.jcrysgro.2014.07.021


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика