doi: 10.17586/2226-1494-2022-22-5-921-928


Influence of low temperatures and thermal annealing on the optical properties of InGaPAs quantum dots

V. V. Andryushkin, A. S. Dragunova, S. D. Komarov, A. M. Nadtochiy, A. G. Gladyshev, A. V. Babichev, A. V. Uvarov, I. I. Novikov, E. S. Kolodeznyi, L. Y. Karachinsky, N. V. Kryzhanovskaya, V. N. Nevedomskii, , V. E. Bougrov


Read the full article  ';
Article in Russian

For citation:
Andryushkin V.V., Dragunova A.S., Komarov S.D., Nadtochiy A.M., Gladyshev A.G., Babichev A.V., Uvarov A.V., Novikov I.I., Kolodeznyi E.S., Karachinsky L.Ya., Kryzhanovskaya N.V., Nevedomskii V.N., Egorov A.Yu.,
Bougrov V.E. Influence of low temperatures and thermal annealing on the optical properties of InGaPAs quantum dots. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 5, pp. 921–928 (in Russian). doi: 10.17586/2226-1494-2022-22-5-921-928


Abstract
The results of the study of the optical properties of low-density InGaPAs quantum dots, as well as the effect of low temperatures and thermal annealing parameters on their optical and structural properties were presented. InGaPAs quantum dots were formed by substituting phosphorus with arsenic in InGaP layer directly during epitaxial growth. The optical properties of InGaPAs quantum dots were studied by photoluminescence (PL) spectroscopy. Photoluminescence spectra at liquid nitrogen temperature (–196 °С) made it possible to determine the features of nonradiative recombination in heterostructures. The heterostructures were subjected to short-term thermal annealing at temperatures of 600 and 650 °C for 2 min to estimate the effect of annealing on the optical and structural properties of quantum dots. It was shown that at –196 °С the contribution of nonradiative recombination can be considered insignificant for the entire measured range of pumping power rage but at temperatures above –73 °С, the contribution of nonradiative Shockley-Reed recombination can be observed. Rapid thermal annealing of InGaPAs quantum dots led to reduce the number of point defects and growth of PL intensity. InGaPAs quantum dots and substitution method can find their application in the creation of single photon sources. The presented experimental results should be considered for implementing such sources, especially for optimizing the width and intensity of the radiation line.

Keywords: quantum dots, heterostructure, molecular-beam epitaxy, semiconductors, single-photon source

Acknowledgements. This work was supported by the Ministry of Science and Higher Education of the Russian Federation (research project No. 2019-1442) in the part of low temperature measurements. The studies on influence of rapid thermal annealing was implemented in the framework of the Basic Research Program at the HSE University.

References
  1. Michler P., Kiraz A., Becher C., Schoenfeld W.V., Petroff P.M., Zhang L., Huand E., Imamoglu A. A quantum dot single-photon turnstile device. Science, 2000, vol. 290, no. 5500, pp. 2282–2285. https://doi.org/10.1126/science.290.5500.2282
  2. Ward M.B., Karimov O.Z., Unitt D.C., Yuan Z.L., See P., Gevaux D.G., Shields A.J. On-demand single-photon source for 1.3 μm telecom fiber. Applied Physics Letters, 2005, vol. 86, no. 20, pp. 201111. https://doi.org/10.1063/1.1922573
  3. Zinoni C., Alloing B., Monat C., Zwiller V., Li L.H., Fiorec A., Lunghi L., Gerardino A., de Riedmatten H., Zbinden H., Gisin N. Time-resolved and antibunching experiments on single quantum dots at 1300 nm. Applied Physics Letters, 2006, vol. 88, no. 13, pp. 131102. https://doi.org/10.1063/1.2190466
  4. Kok P., Munro W.J., Nemoto K., Ralph T.C., Dowling J.P., Milburn G.J. Linear optical quantum computing with photonic qubits. Reviews of Modern Physics, 2007, vol. 79, no. 1, pp. 135–174. https://doi.org/10.1103/RevModPhys.79.135
  5. Aspuru-Guzik A., Walther P. Photonic quantum simulators. Nature Physics, 2012, vol. 8, no. 4, pp. 285–291. https://doi.org/10.1038/nphys2253
  6. Ustinov V.M., Maleev N.A., Zhukov A.E., Kovsh A.R., Egorov A.Yu., Lunev A.V., Volovik B.V., Krestnikov I.L., Musikhin Yu.G., Bert N.A., Kop’ev P.S., Alferov Zh.I., Ledentsov N.N., Bimberg D. InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm. Applied Physics Letters, 1999, vol. 74, no. 19, pp. 2815–2817. https://doi.org/10.1063/1.124023
  7. Li Y., Lu H.M. Electron transition energy for vertically coupled InAs/GaAs semiconductor quantum dots and rings. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2004, vol. 43, no. 4S, pp. 2104–2109. https://doi.org/10.1143/JJAP.43.2104
  8. KovshA.R., ZhukovA.E., LivshitsD.A., EgorovA.Yu., UstinovV.M., MaximovM.V., MusikhinYu.G., LedentsovN.N., Kop'evP.S., AlferovZh.I., BimbergD. 3.5 WCWoperationofquantumdotlaser. ElectronicsLetters, 1999, vol. 35, no. 14, pp. 1161–1163. https://doi.org/10.1049/el:19990813
  9. AndriushkinV.V., NovikovI.I., GladyshevA.A., KarachinskiiL.Ia., EgorovA.Iu., BugrovV.E. Semiconductorheterostructurewithreducedquantumdotssurfacedensity. PatentRU209708. 2022. (in Russian)
  10. Shkolnik A.S., Karachinsky L.Ya., Gordeev N.Yu., Zegrya G.G., Evtikhiev V.P., Pellegrinia S., Buller G.S. Observation of the biexponential ground-state decay time behavior in InAs self-assembled quantum dots grown on misoriented substrates.Applied Physics Letters, 2005, vol. 86, no. 21,pp. 211112.https://doi.org/10.1063/1.1938000
  11. Huang D., Huang P., Lin D., Wang C., Zeng G.High-speed continuous-variable quantum key distribution without sending alocal oscillator.Optics Letters, 2015, vol. 40, no. 16, pp. 3695–3698.https://doi.org/10.1364/OL.40.003695
  12. Michler P. Single Semiconductor Quantum Dots. Berlin, Springer, 2009, 390 p.
  13. Andryushkin V.V., Gladyshev A.G., Babichev A.V., Kolodeznyi E.S., Novikov I.I., Karachinsky L.Ya., Nevedomskii V.N., Egorov A.Yu.Investigation of optical and structural properties of three-dimensional InGaPAs islands formed by substitution of elements of the fifth group.Journal of Physics: Conference Series, 2020, vol. 1697, no. 1, pp. 012106.https://doi.org/10.1088/1742-6596/1697/1/012106
  14. Gladyshev A.G., Babichev A.V., Andryushkin V.V., Denisov D.V., Nevedomskii V.N., Kolodeznyi E.S., Novikov I.I., Karachinsky L.Ya., Egorov A.Yu.Studying the optical and structural properties of three-dimensional InGaP (As) islands formed by substitution of elements of the fifth group.Technical Physics, 2020, vol. 65, no. 12, pp. 2047–2050.https://doi.org/10.1134/S1063784220120099
  15. NovikovI.I., Gordeev N.Yu., Maksimov M.V., Shernyakov Yu.M., Semenova E.S., Vasil’ev A.P., Zhukov A.E., Ustinov V.M., Zegrya G.G. Temperature dependence oft he effective coefficien to fAugerre combinationin1.3 μmInAs/GaAsQDlasers. Semiconductors, 2005, vol. 39, no. 4, pp. 481–484. https://doi.org/10.1134/1.1900267
  16. ZhenZ., BedarevD.A., VolovikB.V., LedentsovN.N., LunevA.V., MaksimovM.V., Tsatsul'nikovA.F., EgorovA.Yu., ZhukovA.E., KovshA.R., UstinovV.M., Kop'evP.S.Influence of composition and anneal conditions on the optical properties of (In, Ga)As quantum dots in an (Al, Ga)As matrix. Semiconductors, 1999, vol. 33, no. 1, pp. 80–84. https://doi.org/10.1134/1.1187651


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика