doi: 10.17586/2226-1494-2022-22-6-1098-1103


Spectral and kinetic properties of silver sulfide quantum dots in an external electric field

D. S. Daibagya, S. A. Ambrozevich, A. S. Perepelitsa, I. A. Zakharchuk, A. V. Osadchenko, D. M. Bezverkhnyaya, A. I. Avramenko, A. S. Selyukov


Read the full article  ';
Article in Russian

For citation:
Daibagya D.S., Ambrozevich S.A., Perepelitsa A.S., Zakharchuk I.A., Osadchenko A.V., Bezverkhnyaya D.M., Avramenko A.I., Selyukov A.S. Spectral and kinetic properties of silver sulfide quantum dots in an external electric field, Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 6, pp. 1098–1103 (in Russian). doi: 10.17586/2226-1494-2022-22-6-1098-1103


Abstract
The effect of an external electric field on the luminescence characteristics of silver sulfide nanoparticles embedded in a film based on an optically passive dielectric matrix has been studied. The luminescence characteristics were studied using methods of optical and time-resolved spectroscopy involving the time-correlated single-photon counting technique. The morphology of the nanoparticles was studied using transmission electron microscopy. It was shown that in an external electric field, an increase in the intensity of the recombination luminescence band is observed for silver sulfide nanoparticles, together with an increase in the electronic relaxation rate. This effect is explained by the fact that the electric field enhances the transport of free holes to electron traps which are radiative recombination centers. The observed effects indicate that silver sulfide nanoparticles can be effectively used as active layers of organic light-emitting diodes, where an external field of the order of 500 kV/cm will not lead to a deterioration in their operating luminescence characteristics.

Keywords: semiconductor nanoparticles, silver sulfide, recombination luminescence, luminescence decays, external electric field

Acknowledgements. The study was carried out within the RFBR project no. 20-02-00222 A. Authors are grateful to the Dean of the Faculty of Physics of Voronezh State University O.V. Ovchinnikov as well as to Associate Professor of the Department of Optics and Spectroscopy of Voronezh State University M.S. Smirnov for helpful discussions.

References
  1. Luo J., Rong X.-F., Ye Y.-Y., Li W.-Z., Wang X.-Q., Wang W. Research progress on triarylmethyl radical-based high-efficiency OLED. Molecules, 2022, vol. 27, no. 5, pp. 1632. https://doi.org/10.3390/molecules27051632
  2. Corrêa Santos D., Vieira Marques M.D.F. Blue light polymeric emitters for the development of OLED devices. Journal of Materials Science: Materials in Electronics, 2022, vol. 33, no. 16, pp. 12529–12565. https://doi.org/10.1007/s10854-022-08333-3
  3. VashchenkoA.A., OsadchenkoA.V., SelyukovA.S., AmbrozevichS.A., ZakharchukI.A., DaibagyaD.S., ShliakhtunO., VolodinN.Y., CheptsovD.A., DolotovS.M., TravenV.F. Electroluminescenceofcoumarin-baseddyes. BulletinoftheLebedevPhysicsInstitute, 2022, vol. 49, no. 3, pp. 74–77. https://doi.org/10.3103/S106833562203006X
  4. VashchenkoA.A., Vitukhnovskii A.G., LebedevV.S., SelyukovA.S., VasilievR.B., SokolikovaM.S. Organiclightemittingdiodewithanemitterbasedonaplanarlayerofcdsesemiconductornanoplatelets. JETP Letters, 2014, vol. 100, no. 2, pp. 86–90.https://doi.org/10.1134/S0021364014140124
  5. Selyukov A.S., Vitukhnovskii A.G., Lebedev V.S., Vashchenko A.A., Vasiliev R.B., Sokolikova M.S. Electroluminescence of colloidal quasi-two-dimensional semiconducting CdSe nanostructures in a hybrid light-emitting diode. Journal of Experimental and Theoretical Physics, 2015, vol. 120, no. 4, pp. 595–606. https://doi.org/10.1134/S1063776115040238
  6. Bauri J., Choudhary R.B., Mandal G. Recent advances in efficient emissive materials-based OLED applications: a review. Journal of Materials Science, 2021, vol. 56, no. 34, pp. 18837–18866. https://doi.org/10.1007/s10853-021-06503-y
  7. Wu P., He T., Zhu H., Wang Y., Li Q., Wang, Z., Fu X., Wang F., Wang P., Shan C., Fan Z., Liao L., Zhou P., Hu W. Next-generation machine vision systems incorporating two-dimensional materials: Progress and perspectives. InfoMat, 2022, vol. 4, no. 1, pp. e12275. https://doi.org/10.1002/inf2.12275
  8. Jiang P., Tian Z.-Q., Zhu C.-N., Zhang Z.-L., Pang D.-W. Emission-tunable near-infrared Ag2S quantum dots. Chemistry of Materials, 2012, vol. 24, no. 1, pp. 3–5. https://doi.org/10.1021/cm202543m
  9. Grevtseva I.G., Ovhinnikov O.V., Smirnov M.S., Perepelitsa A.S., Chevychelova T.A., Derepko V.N., Osadchenko A.V., Selyukov A.S. The structural and luminescence properties of plexcitonic structures based on Ag2S/l-Cys quantum dots and Au nanorods. RSC Advances, 2022, vol. 12, no. 11, pp. 6525–6532. https://doi.org/10.1039/D1RA08806H
  10. Lin S., Feng Y., Wen X., Zhang P., Woo S., Shrestha S., Conibeer G., Huang S. Theoretical and experimental investigation of the electronic structure and quantum confinement of wet-chemistry synthesized Ag2S nanocrystals. The Journal of Physical Chemistry, 2015, vol. 119, no. 1, pp. 867–872. https://doi.org/10.1021/jp511054g
  11. Grevtseva I., Ovchinnikov O., Smirnov M., Perepelitsa A., Chevychelova T., Derepko V., Osadchenko A., Selyukov A. IR luminescence of plexcitonic structures based on Ag2S/L-Cys quantum dots and Au nanorods. Optics Express, 2022, vol. 30, no. 4, pp. 4668–4679. https://doi.org/10.1364/OE.447200
  12. Bozyigit D., Yarema O., Wood V. Origins of low quantum efficiencies in quantum dot LEDs. Advanced Functional Materials, 2013, vol. 23, no. 24, pp. 3024–3029. https://doi.org/10.1002/adfm.201203191
  13. Vitukhnovsky A.G., Selyukov A.S., Solovey V.R., Vasiliev R.B., Lazareva E.P. Photoluminescence of CdTe colloidal quantum wells in external electric field. Journal of Luminescence, 2017, vol. 186, pp. 194–198. https://doi.org/10.1016/j.jlumin.2017.02.041
  14. OvchinnikovO.V., AslanovS.V., SmirnovM.S., GrevtsevaI.G., PerepelitsaA.S. PhotostimulatedcontrolofluminescencequantumyieldforcolloidalAg2S/2-MPAquantumdots. RSCAdvances, 2019, vol. 9, no. 64, pp. 37312–37320. https://doi.org/10.1039/C9RA07047H
  15. KatsabaA.V., FedyaninV.V., AmbrozevichS.A., VitukhnovskyA.G., LobanovA.N., SelyukovA.S., VasilievR.B., SamatovI.G., Brunkov P.N. Characterization of defects in colloidal cdse nanocrystals by the modified thermostimulated luminescence technique. Semiconductors, 2013, vol. 47, no. 10, pp. 1328–1332. https://doi.org/10.1134/S1063782613100138
  16. Ovchinnikov O.V., Grevtseva I.G., Smirnov M.S., Kondratenko T.S. Reverse photodegradation of infrared luminescence of colloidal Ag2S quantum dots. Journal of Luminescence, 2019, vol. 207, pp. 626–632. https://doi.org/10.1016/j.jlumin.2018.12.019
  17. Derepko V.N., Ovchinnikov O.V., Smirnov M.S., Grevtseva I.G., Kondratenko T.S., Selyukov A.S., Turishchev S.Y. Plasmon-exciton nanostructures, based on CdS quantum dots with exciton and trap state luminescence. Journal of Luminescence, 2022, vol. 248, pp. 118874. https://doi.org/10.1016/j.jlumin.2022.118874
  18. Smirnov M.S., Ovchinnikov O.V. IR luminescence mechanism in colloidal Ag2S quantum dots. Journal of Luminescence, 2020, vol. 227, pp. 117526. https://doi.org/10.1016/j.jlumin.2020.117526
  19. SmirnovM.S., OvchinnikovO.V., GrevtsevaI.G., ZvyaginA.I., PerepelitsaA.S., GaneevR.A.Photoinduced degradation of the optical properties of colloidal Ag2S and CdS quantum dots passivated by thioglycolic acid. Optics and Spectroscopy, 2018, vol. 124, no. 5, pp. 681–686. https://doi.org/10.1134/S0030400X18050211


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика