doi: 10.17586/2226-1494-2023-23-1-21-27


Transmission of 3D holographic information over a radio channel by a method close to SSB

A. L. Pazoev, S. A. Shoydin


Read the full article  ';
Article in Russian

For citation:
Pazoev A.L., Shoydin S.A. Transmission of 3D holographic information over a radio channel by a method close to SSB. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 1, pp. 21–27 (in Russian). doi: 10.17586/2226-1494-2023-23-1-21-27


Abstract
The results of the research on the possibility of transmitting holographic information over the Wi-Fi 40 MHz radio channel are presented. It is shown that the use of two main 3D image modalities for this, — a depth map of the holographic object and the texture of its surface, is sufficient to synthesize a full-fledged hologram at the receiving end of the communication channel, restoring the holographic object with continuous vertical and horizontal parallax. The method of transmitting 3D holographic information is similar to the well–known in radio engineering method of transmitting information on one sideband (Single-sideband modulation, SSB). The essential difference of the proposed method is that the spatial frequencies forming the hologram are the result of simultaneous amplitude and phase modulation of the reference signal. This complicates their theoretical analysis. Experimental confirmation of the possibility of such a transfer was performed using a free FTP client with open source FileZilla. A communication protocol has been applied to transmit information over a wireless Wi-Fi channel. It is shown that the transmitted information stream is sufficient to synthesize a hologram reconstructing 3D images at the receiving end of the communication channel. At the same time, the holographic image of a dynamically changing object with a television frame rate has continuous horizontal and vertical parallax, and the spatial resolution of the restored image was no worse than a high-definition television image of Full HD. The possibility of transmitting all the necessary information over the radio channel to reproduce a holographic 3D video stream at the receiving end of the channel with a resolution not lower than in high-definition television standards with continuous parallax has been experimentally confirmed.

Keywords: holography, holographic information, SSB method

References
  1. Denisiuk Iu.N. Displaying the optical properties of an object in the wave field of radiation scattered by it. Optika i spektroskopija, 1963, vol. 15, no. 4, pp. 522–532. (in Russian)
  2. Leith E.N., Upatnieks J. Reconstructed wavefronts and communication theory. Journal of the Optical Society of America, 1962, vol. 52, no. 10, pp. 1123–1130. https://doi.org/10.1364/JOSA.52.001123
  3. Leith E.N., Upatnieks J. Wavefront reconstruction with diffused illumination and three-dimensional objects. Journal of the Optical Society of America, 1964, vol. 54, no. 11, pp. 1295–1301. https://doi.org/10.1364/JOSA.54.001295
  4. Van Heerden P.J. A new optical method of storing and retrieving information. Applied Optics, 1963, vol. 2, no. 4, pp. 387–392. https://doi.org/10.1364/AO.2.000387
  5. Hill B. Some aspects of a large capacity holographic memory. Applied Optics, 1972, vol. 11, no. 1, pp. 182–191. https://doi.org/10.1364/AO.11.000182
  6. Titar V.P., Bogdanova T.V. Problems of creating a holographic TV system. Radiojelektronika i informatika, 1999, no. 2(7), pp. 38–42. (in Russian)
  7. DenisiukIu.N.Are the known fundamental principles of holography sufficient to create new types of 3D cinema and artificial intelligence? Zhurnaltehnicheskojfiziki, 1991, vol. 61, no. 8, pp. 149–161.(in Russian)
  8. Shannon C.E. Communication in the presence of noise. Proceedings of the IRE, 1949, vol. 37, no. 1, pp. 10–21. https://doi.org/10.1109/jrproc.1949.232969
  9. GOST 24375-80. Radio communication. Terms and Definitions. 01.01.1980. (in Russian)
  10. Komar V.G. Informational assessment of the image quality of cinematographic systems. Tehnika kino i televidenija, 1971, no. 10, pp. 9–22. (in Russian)
  11. Shoidin S.A. Method of holographic recording remote formation. Patent RU2707582C1. 2019. (in Russian)
  12. Naughton T.J., McDonald J.B., Javidi B. Efficient compression of Fresnel fields for internet transmission of three-dimensional images. Applied Optics, 2003, vol. 42, no. 23, pp. 4758–4764. https://doi.org/10.1364/AO.42.004758
  13. Yamaguchi I., Zhang T. Phase-shifting digital holography. Optics Letters, 1997, vol. 22, no. 16, pp. 1268–1270. https://doi.org/10.1364/OL.22.001268
  14. Blinder D., Ahar A., Bettens S., Birnbaum T., Symeonidou A., Ottevaere H., Schretter C., Schelkens P. Signal processing challenges for digital holographic video display systems. Signal Processing: Image Communication, 2019, vol. 70, pp. 114–130. https://doi.org/10.1016/j.image.2018.09.014
  15. Bernardo M.V., Fernandes P., Arrifano A., Antonini M., Fonseca E., Fiadeiro P.T., Pinheiro A.M.G., Pereira M. Holographic representation: Hologram plane vs. object plane. Signal Processing: Image Communication, 2018, vol. 68, pp. 193–206. https://doi.org/10.1016/j.image.2018.08.006
  16. Seo Y.-H., Choi H.-J., Kim D.-W. 3D scanning-based compression technique for digital hologram video. Signal Processing: Image Communication, 2007, vol. 22, no. 2, pp. 144–156. https://doi.org/10.1016/j.image.2006.11.007
  17. Naughton Th.J., McDonald J.B., Javidi B. Efficient compression of Fresnel fields for internet transmission of three-dimensional images. Applied Optics, 2003, vol. 42, no. 23, pp. 4758–4764. https://doi.org/10.1364/AO.42.004758
  18. Muhamad R.K., Birnbaum T., Gilles A., Mahmoudpour S., Oh K.-J., Pereira M., Perra C., Pinheiro A., Schelkens P. JPEG Pleno holography: scope and technology validation procedures. Applied Optics, 2021, vol. 60, no. 3, pp. 641–651. https://doi.org/10.1364/AO.404305
  19. Shoydin S.A., Pazoev A.L. Transmission of 3D holographic information via conventional communication channels and the possibility of multiplexing in the implementation of 3D hyperspectral images. Photonics, 2021, vol. 8, no. 10, pp. 448–473. https://doi.org/10.3390/photonics8100448
  20. Shoydin S.A., Pazoev A.L. Remote formation of holographic record. Optoelectronics, Instrumentation and Data Processing, 2021, vol. 57, no. 1, pp. 80–88. https://doi.org/10.3103/S8756699021010118
  21. Pazoev A.L., Shoydin S.A. Transmission of holographic information on a single sideband. Interexpo GEO-Siberia, 2021, vol. 8, pp. 109–117. (in Russian). https://doi.org/10.33764/2618-981X-2021-8-109-117
  22. ShoidinS.A., PazoevA.L. FeaturesoftheSSBhologramssynthesis(SSBH). HoloExpo2021: AbstractsoftheXVIIInternationalConferenceonHolograp. Moscow, Bauman Moscow State Technical University, 2021, pp. 207–218.(inRussian)
  23. Shoydin S.A., Pazoev A.L. Compressing 3D holographic information similar to data transmission via a single sideband. Journal of Optical Technology, 2022, vol. 89, no. 3, pp. 176–182. https://doi.org/10.1364/JOT.89.000176
  24. Shoydin S.A., Pazoev A.L., Smyk A.F., Shurygin A.V. 3D object holograms synthesized in Dot Matrix technology at the receiving end of the communication channel. Computer Optics, 2022, vol. 46, no. 2, pp. 204–213. (in Russian). https://doi.org/10.18287/2412-6179-CO-1037
  25. ShoidinS.A., PazoevA.L., TcyganovI.K., DrozdovaE.A.Recording of a hologram transmitted over a single sideband communication channel. HoloExpo2021: Abstracts of theXVIII nternational Conference on Holograp. Moscow, Bauman Moscow State Technical University, 2021, pp. 109–117. (in Russian)


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика