doi: 10.17586/2226-1494-2023-23-1-68-78


Investigation on impact and wear behavior of Al6061 (SiC+Al2O3) and Al7075 (SiC+Al2O3) hybrid composites 

R. Ravichandaran, S. Saminathan, S. Gopal, R. Ravisankar


Read the full article  ';
Article in English

For citation:

Ravichandaran R., Selvarasu S., Gopal S., Ramachandran R. Investigation on impact and wear behavior of Al6061 (SiC + Al2O3) and Al7075 (SiC + Al2O3) hybrid composites. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 1, pp. 68–78. doi: 10.17586/2226-1494-2023-23-1-68-78



Abstract
The current study focuses on the properties of dry sliding characteristics and impact strength of two different aluminum alloys that were reinforced with 100 nm sized Silicon carbide (SiC) and Aluminum oxide (Al2O3) ceramic particles, for improving the mechanical properties of the final alloy with the mixing materials characteristics. Stir casting method is adopted for fabricating the composites, matrix being Al6061 and Al7075, utilizing three distinct reinforcement ratios. In order to improve the mechanical properties and increase resistance to wear, tear, and shear, SiC and Al2O3 are utilized as reinforcing elements. Following the creation of the composite matrices, their physical and mechanical behaviors are examined in accordance with ASTM standards, and a comparison between the hybrid composites made of Al6061 and Al7075 is then completed. Comparison of the obtained samples showed that the Al7075 (12 % SiC + 6 % Al2O3) alloy exhibits characteristics with exceptional tribological and mechanical characteristics. The studied alloy can be used in the automotive industry, for example, in the production of pistons, connecting rods, due to the minimum degree of wear and variable thermal expansion coefficient.

Keywords: hybrid composite, Al6061, Al7075, impact strength, wear resistivity, optical microscope analysis

References
  1. Chawla K.K.Composite Materials. Science and Engineering. 2nd ed. New York, Springer Verlag, 1998, 165 p.
  2. Chawla N., Shen Y.L. Mechanical behavior of particle reinforced metal matrix composites. Advanced Engineering Materials, 2001, vol. 3, no. 6, pp. 357–370.
  3. Senthilkumar N., Kalaichelvan K., Elangovan K. Mechanical behaviour of aluminum particulate epoxy composite – experimental study and numerical simulation.International Journal of Mechanical and Materials Engineering, 2012, vol. 7, no. 3, pp. 214–221.
  4. Srivatsan T.S., Al-Hajri M., Smith C., Petraroli M. The tensile response and fracture behavior of 2009 aluminium alloy metal matrix composite. Materials Science and Engineering: A, 2003, vol. 346, no. 1-2, pp. 91–100. https://doi.org/10.1016/S0921-5093(02)00481-1
  5. Tan M., Xin Q., Li Z., Zong B.Y. Influence of SiC and Al2O3 particulate reinforcements and heat treatments on mechanical properties and damage evolution of Al-2618 metal matrix composites. Journal of Materials Science, 2001, vol. 36, no. 8, pp. 2045–2053. https://doi.org/10.1023/A:1017591117670
  6. Lloyd D.J. Particle reinforced aluminium and magnesium matrix composites. International Materials Reviews, 1994, vol. 39, no. 1, pp. 1–23. https://doi.org/10.1179/imr.1994.39.1.1
  7. Sundaraselvan S., Senthilkumar N. Surface modification of AZ61 magnesium alloy with nano-al2o3 using laser cladding technique: optimization of wear properties through hybrid GRA-PCA. International Journal of Rapid Manufacturing, 2019, vol. 8, no. 3, pp. 221. https://doi.org/10.1504/IJRAPIDM.2019.10020259
  8. Tjong S.C., Wu S.Q., Zhu H.G. Wear behavior of in situ TiB2·Al2O3/Al and TiB2·Al2O3/Al–Cu composites. Composites Science and Technology, 1999, vol. 59, no. 9, pp. 1341–1347. https://doi.org/10.1016/S0266-3538(98)00172-9
  9. Nair S.V., Tien J.K., Bates R.C. SiC-reinforced aluminium metal matrix composites. International Metals Reviews, 1985, vol. 30, no. 1, pp. 275–290. https://doi.org/10.1179/imtr.1985.30.1.275
  10. Bhojan N., Senthilkumar B., Deepanraj B. Parametric influence of friction stir welding on cast Al6061/20%SiC/2%MoS2 MMC mechanical properties. Applied Mechanics and Materials, 2016, vol.  852, pp. 297–303. https://doi.org/10.4028/www.scientific.net/AMM.852.297
  11. Alpas A.T., Zhang J. Effect of microstructure (particulate size and volume fraction) and counter face material on the sliding wear resistance of particulate-reinforced. Metallurgical and Materials Transactions A, 1994, vol. 25, no. 5, pp. 969–983. https://doi.org/10.1007/BF02652272
  12. Kwok J.K.M., Lim S.C. High-speed tribological properties of some Al/SiCp composites. I. Frictional and wear-rate characteristics. Composites Science and Technology, 1999, vol. 59, no. 1, pp. 55–63. https://doi.org/10.1016/S0266-3538(98)00055-4
  13. Friend C.M. Toughness in metal matrix composites. Materials Science and Technology, 1989, vol. 5, no. 1, pp. 1–7. https://doi.org/10.1179/mst.1989.5.1.1
  14. Nardone V.C., Strife J.R., Prewo K.M. Microstructurally toughened particulate-reinforced aluminum matrix composites. Metallurgical Transactions A, 1991, vol. 22, no. 1, pp. 171–182. https://doi.org/10.1007/BF03350959
  15. Ozden S., Ekici R., Nair F. Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Composites Part A: Applied Science and Manufacturing, 2007, vol. 38, no. 2, pp. 484–494. https://doi.org/10.1016/j.compositesa.2006.02.026
  16. Ragupathy K., Velmurugan C., Senthilkumar N. Tribological and heat treatment prediction of stir cast Al 6061/SiC/MoS2 composites using grey relational analysis. Journal of the Balkan Tribological Association, 2018, vol. 24, no. 2, pp. 198–217.
  17. Saminathan S., Laksmipathy J. Experimental investigation and prediction analysis on Granite/SiC Reinforced Al7050 and Al7075 using hybrid deep neural network based salp swarm optimization. Silicon, 2022, vol. 14, no. 11, pp. 5887–5903. https://doi.org/10.1007/s12633-021-01349-0
  18. Nielson L.E., Landel R.F. Mechanical Properties of Polymers and Composites.New York, Marcel Dekker, Inc., 1994.
  19. ASTM E23-93a. Standard test methods for notched bar impact testing of metallic materials. 1993 Annual book of ASTM Standards, pp. 206–26.
  20. Selvakumar V., Muruganandam S., Senthilkumar N. Evaluation of mechanical and tribological behavior of Al–4 %Cu–x %SiC composites prepared through powder metallurgy technique. Transactions of the Indian Institute of Metals, 2017, vol. 70, no. 5, pp. 1305–1315. https://doi.org/10.1007/s12666-016-0923-7
  21. Thirumalvalavan S., Senthilkumar N. Experimental investigation and optimization of HVOF spray parameters on wear resistance behaviour of Ti-6Al-4V alloy. Comptes rendus de l’Academie bulgare des Sciences, 2019, vol. 72, no. 5, pp. 664–673. https://doi.org/10.7546/crabs.2019.05.15
  22. Gajalakshmi K., Senthilkumar N., Prabu B. Multi-response optimization of dry sliding wear parameters of AA6026 using hybrid gray relational analysis coupled with response surface method. Measurement and Control, 2019, vol. 52, no. 5-6, pp. 540–553. https://doi.org/10.1177/0020294019842603
  23. Bonollo F., Ceschini L., Garagnani G.L. Mechanical and Impact behaviour of (Al2O3)p/2014 and (Al2O3)p/6061 Al metal matrix composites in the 25–200°C range. Applied Composite Materials, 1997, vol. 4, no. 3, pp. 173–185. https://doi.org/10.1007/BF02481779
  24. Surappa M.K., Sivakumar P. Fracture toughness evaluation of 2040-Al/Al2O3 particulate composites by instrumented impact. Composites Science and Technology, 1993, vol. 46, no. 3, pp. 287–292. https://doi.org/10.1016/0266-3538(93)90162-A
  25. Poza P., Llorca J. Fracture toughness and fracture mechanisms of Al–Al2O3 composites at cryogenic and elevated temperatures. Materials Science and Engineering: A, 1996, vol. 206, no. 2, pp. 183–193. https://doi.org/10.1016/0921-5093(95)09999-9
  26. Hasson D.F., Hoover S.M., Crowe C.R. Effect of thermal treatment on the mechanical and toughness properties of extruded SiCw/aluminium 6061 metal matrix composite. Journal of Materials Science, 1985, vol. 20, no. 11, pp. 4147–4154. https://doi.org/10.1007/BF00552410
  27. Unsworth J.P., Bandyopadhyay S. Effect of thermal ageing on hardness, tensile and Impact properties of an alumina microsphere-reinforced aluminium metal–matrix composite. Journal of Materials Science, 1994, vol. 29, no. 17, pp. 4645–4650. https://doi.org/10.1007/BF00376291


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика