doi: 10.17586/2226-1494-2023-23-2-227-235


Analysis of the phase images obtained during the collection of a holographic registration system based on the geometric phase effect and a polarization camera

A. S. Ezerskii, K. A. Gerasimov, A. A. Misura


Read the full article  ';
Article in Russian

For citation:
Ezerskii A.S., Gerasimov K.A., Misura A.A. Analysis of the phase images obtained during the collection of a holographic registration system based on the geometric phase effect and a polarization camera. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 2, pp. 227–235 (in Russian). doi: 10.17586/2226-1494-2023-23-2-227-235 


Abstract
The results of measuring the surface depth of the test object using digital holography are presented. The resulting image was compared to a model based on the calibration slide documentation. In the presented holographic microscope, instead of an eyepiece, a lens with a geometric phase effect is used, which converts a beam with linear polarization into a pair of beams with circular polarizations (diverging and converging). The parallel phase shift method was used to obtain phase distribution. Using a polarization camera, four interferograms corresponding to four different linear projections of interfering waves with right and left circular polarizations were recorded in one exposure. Holograms of a phase object-micrometer were obtained, according to which, by the method of parallel phase shift, the distribution of phase lag introduced by the object was restored. To correct the aberration, subtraction of the recorded phase raid of the illuminating wave — the experimentally obtained phase of the wavefront without an object is used. The developed digital holographic phase microscope based on a geometric phase lens and a polarization camera makes it possible to correctly visualize the surface relief profile. The microscope can be used as a tool for monitoring the state of biological objects exposed to external effects.

Keywords: digital holographic microscopy, holography, phase imaging, polarizing camera, geometric phase lens, analysis of phase distributions

Acknowledgements. This work was supported by the grant of the President of the Russian Federation No. MD-6101.2021.1.2.

References
  1. GOST R. 59321.3 Optics and photonics. Holography. Part 3. Digital and computer holography. Тerms and definitions. 2021. (in Russian)
  2. Kemper B., von Bally G. Digital holographic microscopy for live cell applications and technical inspection. Applied Optics, 2008, vol. 47, no. 4, pp. A52. https://doi.org/10.1364/ao.47.000a52
  3. Cacace T., Bianco V., Ferraro P. Quantitative phase imaging trends in biomedical applications. Optics and Lasers in Engineering, 2020, vol. 135, pp. 106188. https://doi.org/10.1016/j.optlaseng.2020.106188
  4. Alam Z., Poddar R. An in-vivo depth-resolved imaging of developing zebrafish microstructure and microvasculature using swept-source optical coherence tomography angiography. Optics and Lasers in Engineering, 2022, vol. 156, pp. 107087. https://doi.org/10.1016/j.optlaseng.2022.107087
  5. Kulya M.S., Balbekin N.S., Gredyuhina I.V., Uspenskaya M.V., Nechiporenko A.P., Petrov N.V. Computational terahertz imaging with dispersive objects. Journal of Modern Optics, 2017, vol. 64, no. 13, pp. 1283–1288. https://doi.org/10.1080/09500340.2017.1285064
  6. Kulya M., Semenova V., Gorodetsky A., Bespalov V.G., Petrov N.V. Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams. Applied Optics, 2019, vol. 58, no. 5, pp. A90. https://doi.org/10.1364/ao.58.000a90
  7. Balbekin N.S., Kulya M.S., Belashov A.V., Gorodetsky A., Petrov N.V. Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography. Scientific Reports, 2019, vol. 9, no. 1, pp. 180. https://doi.org/10.1038/s41598-018-36642-3
  8. Petrov N.V., Sokolenko B., Kulya M.S., Gorodetsky A., Chernykh A.V. Design of broadband terahertz vector and vortex beams: II. Holographic assessment. Light: Advanced Manufacturing, 2022, vol. 3, pp 44. https://doi.org/10.37188/lam.2022.044
  9. Grachev Y.V., Kokliushkin V.A., Petrov N.V. Open-source 3D-printed terahertz pulse time-domain holographic detection module. Applied Optics, 2022, vol. 61, no. 5, pp. B307. https://doi.org/10.1364/ao.444979
  10. Khoroshun A.N., Chernykh A.V., Kucher S.V., Tsymbaluk A.N. Optimal parameters of a shearing interferometer with a singular light source. Journal of Optical Technology, 2012, vol. 79, no. 1, pp. 9–11. 
  11. Petrov N.V., Pavlov P.V., Malov A.N. Numerical simulation of optical vortex propagation and reflection by the methods of scalar diffraction theory. Quantum Electronics, 2013, vol. 43, no. 6, pp. 582–587. https://doi.org/10.1070/qe2013v043n06abeh015190
  12. Porfirev A.P., Khonina S.N. Simple method for efficient reconfigurable optical vortex beam splitting: erratum. Optics Express, 2017, vol. 25, no. 25, pp. 32214. https://doi.org/10.1364/oe.25.032214
  13. Khoroshun A.N., Chernyk A.V., Tsimbaluk A.N., Kirichenko J.A., Yezhov P.V., Kim J.-T. Experimental realization of an axial optical vortex beam synthesis using a Gaussian beam and two ramps from a spatial light modulator. Proceedings of SPIE, 2013, vol. 9066, pp. 90660P. https://doi.org/10.1117/12.2049059
  14. Bekshaev A., Chernykh A., Khoroshun A., Masajada J., Popiołek-Masajada A., Riazantsev A. Controllable singular skeleton formation by means of the Kummer optical-vortex diffraction at a rectilinear phase step. Journal of Optics, 2021, vol. 23, no. 3, pp. 034002. https://doi.org/10.1088/2040-8986/abcea7
  15. Dyomin V.V., Makarov A.V., Polovtsev I.G. Plankton detection using a simulator of a submersible holographic camera. Atmospheric and Oceanic Optics, 2006, vol. 19, no. 4, pp. 277–283.
  16. Brazovskii V.V., Vagner V.A., Evstigneev V.V., Eskov A.V., Prolubnikov V.I., Tubalov N.P. Holographic method for studying the disperse composition of an aerosol. Gorizonty obrazovanija, 2006, no. 8, pp. 1–9. (in Russian)
  17. Nikolaeva T.Y., Petrov N.V. Characterization of particles suspended in a volume of optical medium at high concentrations by coherent image processing. Optical Engineering, 2015, vol. 54, no. 8, pp. 083101. https://doi.org/10.1117/1.oe.54.8.083101
  18. Nikolaeva T.Y., Petrov N.V. Statistical study of coherent images of particles in the volume of optical medium. Proceedings of SPIE, 2014, vol. 9216, pp. 921612. https://doi.org/10.1117/12.2061671
  19. Vovk T.A., Petrov N.V. Correlation characterization of particles in volume based on peak-to-basement ratio. Scientific Reports, 2017, vol. 7, pp. 43840. https://doi.org/10.1038/srep43840
  20. Larkin A.I. Visualization and recognition of the particle tracks by methods of coherent laser holography. Scientific Visualization, 2018, vol. 10, no. 1, pp. 49–55. (in Russian). https://doi.org/10.26583/sv.10.1.03
  21. Betin A.Y., Bobrinev V.I., Odinokov S.B., Evtikhiev N.N., Starikov R.S., Starikov S.N., Zlokazov E.Yu. Holographic memory optical system based on computer-generated Fourier holograms. Applied Optics, 2013, vol. 52, no. 33, pp. 8142–8145. https://doi.org/10.1364/ao.52.008142
  22. Hesselink L., Orlov S.S., Bashaw M.C. Holographic data storage systems.Proceedings of the IEEE, 2004, vol. 92, no. 8, pp. 1231–1280. https://doi.org/10.1109/jproc.2004.831212
  23. Cheremkhin P.A., Evtikhiev N.N., Krasnov V.V., Kulakov M.N., Kurbatova E.A., Molodtsov D.Y., Rodin V.G. Demonstration of digital hologram recording and 3D-scenes reconstruction in real-time. Proceedings of SPIE, 2016, vol. 9889, pp. 98891M. https://doi.org/10.1117/12.2227767
  24. Ferraro P., Grilli S., Alfieri D., De Nicola S., Finizio A., Pierattini G., Javidi B., Coppola G., Striano V. Extended focused image in microscopy by digital holography. Optics Express, 2005, vol. 13, no. 18, pp. 6738–6749. https://doi.org/10.1364/opex.13.006738
  25. Nalegaev S.S., Belashov A.V., Petrov N.V. Application of photothermal digital interferometry for nonlinear refractive index measurements within a Kerr approximation. Optical Materials, 2017, vol. 69, pp. 437–443. https://doi.org/10.1016/j.optmat.2017.03.030
  26. Momgaudis B., Guizard S., Bilde A., Melninkaitis A. Nonlinear refractive index measurements using time-resolved digital holography. Optics Letters, 2018, vol. 43, no. 2, pp. 304–307. https://doi.org/10.1364/ol.43.000304
  27. Petrov N.V., Nalegaev S.S., Belashov A.V., Shevkunov I.A., Putilin S.E., Lin Y.C., Cheng C.J. Time-resolved inline digital holography for the study of noncollinear degenerate phase modulation. Optics Letters, 2018, vol. 43, no. 15, pp. 3481. 
  28. Belashov A.V., Cheng C.-J., Petrov N.V. Noncollinear degenerate phase modulation in samples with inhomogeneous optical nonlinear properties [Invited]. Applied Optics, 2021, vol. 60, no. 10, pp. B14–B2. 
  29. Belashov A.V., Cheng C.J., Petrov N.V. On the possibility of studying the fraction of inhomogeneities in optical nonlinear media using time-resolved inline digital holography. Technical Physics, 2021, vol. 66, no. 5, pp. 681–689. 
  30. Belashov A., Shevkunov I.A., Kolesova E.P., Orlova A.O., Putilin S.E., Veniaminov A.V., Cheng C.-J., Petrov N.V. Investigation of nonlinear optical properties of quantum dots deposited onto a sample glass using time-resolved inline digital holography. Journal of Imaging, 2022, vol. 8, no. 3, pp. 74. https://doi.org/10.3390/jimaging8030074
  31. Kumar V., Shakher C. Study of heat dissipation process from heat sink using lensless Fourier transform digital holographic interferometry. Applied Optics, 2015, vol. 54, no. 6, pp. 1257–1266. 
  32. Belashov A.V., Petrov N.V., Semenova I.V., Vasyutinskii O.S. Digital holographic micro-interferometry of nonradiative transitions in biological specimens. Proceedings of SPIE, 2015, vol. 9529, pp. 95290G. 
  33. Creath K., Schwartz G.E. Dynamic visible interferometric measurement of thermal fields around living biological objects. Proceedings of SPIE, 2004, vol. 5531, pp. 24–31. https://doi.org/10.1117/12.562306
  34. Konin Iu.A., Garanin A.I., Perminov A.V. Defectoscopy of optical fibers and preforms by method holographic interferometry. Applied Photonics, 2015, vol. 2, no. 2, pp. 154–165. (in Russian)
  35. Prisiazhniuk A.V., Sokolenko B.V., Poletaev D.A., Shostka N.V. Digital holographic testing of the optical fiber at welding area. Journal of Physics: Conference Series, 2019, vol. 1400, no. 6, pp. 066042. https://doi.org/10.1088/1742-6596/1400/6/066042
  36. Yamaguchi I., Kato J., Ohta S. Surface shape measurement by phase-shifting digital holography. Optical Review, 2001, vol. 8, no. 2, pp. 85–89. 
  37. Yamaguchi I., Ohta S., Kato J. Surface contouring by phase-shifting digital holography. Optics and Lasers in Engineering, 2001, vol. 36, no. 5, pp. 417–428. 
  38. Dong J., Jia S., Jiang C. Surface shape measurement by multi-illumination lensless Fourier transform digital holographic interferometry. Optics Communications, 2017, vol. 402, pp. 91–96. https://doi.org/10.1016/j.optcom.2017.05.051
  39. Belashov A.V., Petrov N.V. Improvement of rough surfaces height map reconstruction accuracy in tilt angle illumination digital holography. Optical Engineering, 2020, vol. 59, no. 10, pp. 102414. https://doi.org/10.1117/1.oe.59.10.102414
  40. Katkovnik V., Shevkunov I., Petrov N.V., Egiazarian K. Multiwavelength surface contouring from phase-coded noisy diffraction patterns: wavelength-division optical setup. Optical Engineering, 2018, vol. 57, no. 8, pp. 085105. https://doi.org/10.1117/1.oe.57.8.085105
  41. Verrier N., Alloul L., Gross M. Vibration of low amplitude imaged in amplitude and phase by sideband versus carrier correlation digital holography. Optics Letters, 2015, vol. 40, no. 3, pp. 411–414. https://doi.org/10.1364/ol.40.000411
  42. Tychinskii V.P. Coherent phase microscopy of intracellular processes. Physics-Uspekhi, 2001, vol. 44, no. 6, pp. 617–629. https://doi.org/10.1070/pu2001v044n06abeh000841
  43. Belashov A.V., Zhikhoreva A.A., Belyaeva T.N., Kornilova E.S., Petrov N.V., Salova A.V., Semenova I.V., Vasyutinskii O.S. Digital holographic microscopy in label-free analysis of cultured cells’ response to photodynamic treatment. Optics Letters, 2016, vol. 41, no. 21, pp. 5035. https://doi.org/10.1364/ol.41.005035
  44. Hu Y., Zuo C., Sun J., Chen Q., Zhang Y. A compact and lensless digital holographic microscope setup. Proceedings of SPIE, 2015, vol. 9524, pp. 952426. https://doi.org/10.1117/12.2189634
  45. Popescu G. Quantitative Phase Imaging of Cells and Tissues. First edition. New York, McGraw-Hill Education, 2011, 384 p.
  46. Montresor S., Picart P. Quantitative appraisal for noise reduction in digital holographic phase imaging. Optics Express, 2016, vol. 24, no. 13, pp. 14322. https://doi.org/10.1364/oe.24.014322
  47. Katkovnik V., Shevkunov I.A., Petrov N.V., Egiazarian K. Wavefront reconstruction in digital off-axis holography via sparse coding of amplitude and absolute phase. Optics Letters, 2015, vol. 40, no. 10, pp. 2417–2420. https://doi.org/10.1364/ol.40.002417
  48. Katkovnik V., Shevkunov I., Petrov N.V., Egiazarian K. High-accuracy off-axis wavefront reconstruction from noisy data: local least square with multiple adaptive windows. Optics Express, 2016, vol. 24, no. 22, pp. 25068. https://doi.org/10.1364/oe.24.025068
  49. Belashov A.V., Petrov N.V., Semenova I.V. Digital off-axis holographic interferometry with simulated wavefront. Optics Express, 2014, vol. 22, no. 23, pp. 28363–28376. https://doi.org/10.1364/oe.22.028363
  50. Bianco V., Memmolo P., Leo M., Montresor S., Distante C., Paturzo M., Picart P., Javidi B., Ferraro P. Strategies for reducing speckle noise in digital holography. Light: Science & Applications, 2018, vol. 7, no. 1, pp. 1–16. https://doi.org/10.1038/s41377-018-0050-9
  51. Choi K., Joo K.-I., Lee T.-H., Kim H.-R., Yim J., Do H., Min S.-W. Compact self-interference incoherent digital holographic camera system with real-time operation. Optics Express, 2019, vol. 27, no. 4, pp. 4818. https://doi.org/10.1364/oe.27.004818
  52. Rosen J., Vijayakumar A., Kumar M., Rai M.R., Kelner R., Kashter Y., Bulbul A., Mukherjee S. Recent advances in self-interference incoherent digital holography. Advances in Optics and Photonics, 2019, vol. 11, no. 1, pp. 1–66. https://doi.org/10.1364/aop.11.000001
  53. DeMars L.A., Mikuła-Zdańkowska M., Falaggis K., Porras-Aguilar R. Single-shot phase calibration of a spatial light modulator using geometric phase interferometry. Applied Optics, 2020, vol. 59, no. 13, pp. D125–D130. https://doi.org/10.1364/ao.383610
  54. Hong J., Kim M.K. Single-shot self-interference incoherent digital holography using off-axis configuration. Optics Letters, 2013, vol. 38, no. 23, pp. 5196. https://doi.org/10.1364/ol.38.005196
  55. Nguyen C.M., Muhammad D., Kwon H.-S. Spatially incoherent common-path off-axis color digital holography. Applied Optics, 2018, vol. 57, no. 6, pp. 1504. https://doi.org/10.1364/ao.57.001504
  56. Quan X., Matoba O., Awatsuji Y. Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings. Optics Letters, 2017, vol. 42, no. 3, pp. 383. https://doi.org/10.1364/ol.42.000383
  57. Nguyen T.H., Edwards C., Goddard L.L., Popescu G. Quantitative phase imaging with partially coherent illumination. Optics Letters, 2014, vol. 39, no. 19, pp. 5511. https://doi.org/10.1364/ol.39.005511
  58. Kumar M., Matoba O., Quan X., Rajput S.K., Awatsuji Y., Tamada Y. Single-shot common-path off-axis digital holography: applications in bioimaging and optical metrology [Invited]. Applied Optics, 2021, vol. 60, no. 4, pp. A195. https://doi.org/10.1364/ao.404208
  59. Bouchal P., Štrbková L., Dostál Z., Chmelík R., Bouchal Z. Geometric-phase microscopy for quantitative phase imaging of isotropic, birefringent and space-variant polarization samples. Scientific Reports, 2019, vol. 9, no. 1, pp. 1–11. https://doi.org/10.1038/s41598-019-40441-9
  60. Mico V., Zalevsky Z., García J. Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution. Optics Communications, 2008, vol. 281, no. 17, pp. 4273–4281. https://doi.org/10.1016/j.optcom.2008.04.079
  61. Hong J., Kim M. Overview of techniques applicable to self-interference incoherent digital holography. Journal of the European Optical Society: Rapid Publications, 2013, vol. 8, pp. 13077. https://doi.org/10.2971/jeos.2013.13077
  62. Kim M.K. Incoherent digital holographic adaptive optics. Applied Optics, 2013, vol. 52, no. 1, pp. A117–A130. https://doi.org/10.1364/ao.52.00a117
  63. Shevkunov I., Petrov N.V. Phase retardation analysis in a rotated plane-parallel plate for phase-shifting digital holography. Journal of Imaging, 2022, vol. 8, no. 4, pp. 87. https://doi.org/10.3390/jimaging8040087
  64. Awatsuji Y., Sasada M., Kubota T. Parallel quasi-phase-shifting digital holography. Applied Physics Letters, 2004, vol. 85, no. 6, pp. 1069–1071. https://doi.org/10.1063/1.1777796
  65. Chernykh A.V., Ezerskii A.S., Georgieva A.O., Petrov N.V. Study on object wavefront sensing in parallel phase-shifting camera with geometric phase lens. Proceedings of SPIE, 2021, vol. 11898, pp. 118980X. https://doi.org/10.1117/12.2602841
  66. Chernykh A.V., Georgieva A.O., Ezerskii A.S., Petrov N.V. Simple self-interference microscope design with geometric phase lens and polarization camera. Proc. of the Frontiers in Optics + Laser Science, 2021, pp. JW7A.118. https://doi.org/10.1364/FIO.2021.JW7A.118
  67. Godden T.M., Muñiz-Piniella A., Claverley J.D., Yacoot A., Humphry M.J. Phase calibration target for quantitative phase imaging with ptychography. Optics Express, 2016, vol. 24, no. 7, pp. 7679. https://doi.org/10.1364/oe.24.007679
  68. Shevkunov I., Georgieva A., Belashov A., Petrov N.V. Ptychography with DMD-based complex-valued probe. Proc. of the OSA Imaging and Applied Optics Congress (3D, COSI, DH, ISA, pcAOP), 2021, pp. DM6C.6. https://doi.org/10.1364/DH.2021.DM6C.6
  69. Choi K., Yim J., Min S.-W. Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens. Optics Express, 2018, vol. 26, no. 13, pp. 16212–16225. https://doi.org/10.1364/oe.26.016212
  70. Wolley O., Mekhail S., Moreau P.-A., Gregory T., Gibson G., Leuchs G., Padgett M.J. Imaging below the camera noise floor with a homodyne microscope. arXiv, 2022, arXiv:2208.04898. https://doi.org/10.48550/arXiv.2208.04898
  71. Mikhail Polyanskiy. RefractiveIndex.INFO website. Available at: https://refractiveindex.info/ (accessed: 10.05.2008).
  72. Georgieva A.O., Belashov A.V., Petrov N.V. Complex wavefront manipulation and holographic correction based on digital micromirror device: a study of spatial resolution and discretization. Proceedings of SPIE, 2020, vol. 11294, pp. 112940B. https://doi.org/10.1117/12.2547702
  73. Georgieva A., Belashov A.V., Petrov N.V. Optimization of DMD-based independent amplitude and phase modulation by analysis of target complex wavefront. Scientific Reports, 2022, vol. 12, no. 1, pp. 7754. https://doi.org/10.1038/s41598-022-11443-x
  74. Georgieva A., Ezerskii A., Chernykh A., Petrov N. Numerical displacement of target wavefront formation plane with DMD-based modulation and geometric phase holographic registration system. Atmospheric and Oceanic Optics, 2022, vol. 35, no. 3, pp. 258–265. https://doi.org/10.1134/s1024856022030034
  75. Khonina S.N., Khorin P.A., Serafimovich P.G., Dzyuba A.P., Georgieva A.O., Petrov N.V. Analysis of the wavefront aberrations based on neural networks processing of the interferograms with a conical reference beam. Applied Physics B, 2022, vol. 128, no. 3, pp. 60. https://doi.org/10.1007/s00340-022-07778-y
  76. Khorin P.A., Serafimovich P.G., Dzyuba A.P., Georgieva A.O., Petrov N.V., Khonina S.N. Comparing of linear and conical interferograms for wavefront aberrations analysis based on neural networks. Proceedings of SPIE, 2022, vol. 12295, pp. 122950Q. https://doi.org/10.1117/12.2630978
  77. Linarès-Loyez J., Ferreira J.S., Rossier O., Lounis B., Giannone G., Groc L., Cognet L., Bon P. Self-interference (SELFI) microscopy for live super-resolution imaging and single particle tracking in 3D. Frontiers in Physics, 2019, vol. 7, pp. 68. https://doi.org/10.3389/fphy.2019.00068
  78. Egorova D.A., Kulikov A.V., Mukhtubaev A.B. Method and technology of delivering optical radiation to biological micro-objects. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 5, pp. 775–781. (in Russian). https://doi.org/10.17586/2226-1494-2017-17-5-775-781


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика