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Abstract. The paper presents new results concerning selection of optimal information fusion formula for ensembles of C-
OTDR channels. Here C-OTDR is a coherent optical time domain reflectometer. Each of these channels provides data for
appropriate automatic classifier which is designed to classify the elastic vibration sources in the multiclass case. Those
classifiers form a so-called classifiers ensemble. Ensembles of Lipschitz Classifiers were considered. In this case the goal of
information fusion is to create an integral classificator designed for effective classification of seismoacoustic target events.
The Matching Pursuit Optimization Ensemble Classifiers (MPOEC), the Linear Programming Boosting (LP-Boost) (LP-
and LP-B variants), the Multiple Kernel Learning (MKL), and Weighing of Inversely as Lipschitz Constants (WILC)
approaches were compared. The WILC is a brand new approach to optimal fusion of Lipschitz Classifiers Ensembles. The
basics of these methods have been briefly described along with intrinsic features. All of those methods are based on reducing
the task of choosing convex hull parameters to a solution of an optimization problem. All of the mentioned approaches can be
successfully used for using in the C-OTDR system data processing. Results of practical usage are presented.
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SI3bIK cTaThU — aHrNIMicKuit

Ccbliaka ais nuTupoBanus: Tumodees A.B. CpaBHeHHe pa3IMYHBIX T0JX00B K MyJIbTHKIIACCOBOMY ciusiHHIO HH(opmanyu B C-OTDR
CHCTeMax JUIsl yIaleHHOTO MOHHTOPHHTA MPOTSHKEHHBIX 00beKTOB // Hay4uHO-TeXHHYeCKHil BECTHUK HH(OPMAIMOHHBIX TEXHOJIOTHH, MeXa-
Hukd # ontuky. 2015. Tom 15. Ne 1. C. 122-129

AHHoTanms. PaccmarpuBaeTcsa npobiema BbIOOpa ONTUMAIBHOTO crioco0a ClusHuS HH(POpMalKu, HOCTYHAoUed OT MHO-
JKECTBa KaHAJOB CHCTEMbI KOT€PEHTHO# omnTuueckoii peduiektomerpun Bo BpemenHoi obnactu (C-OTDR). Kaxasiit u3
9THX KaHAJOB SIBISIETCS HCTOYHUKOM JaHHBIX AJISI aBTOMAaTHIECKHX KJIACCH(PUKATOPOB HCTOYHUKOB YIPYTOH CEHCMOAKyCTH-
YecKoil BHOpanuu. DTH KiacCU(PUKATOPEI 00pa3yroT aHCaMOIb Kitaccu(UKaTOpoB. BpUTH paccMOTpEeHBI aHCaMOIH JTUIIIIHLIC-
BBIX KJIaCCH(UKATOPOB. B 3TOM cirydae menbro ciustHus HHPOPMALUH SBIISIETCS TIOCTPOCHNUE MHTETPAITBHOTO KIacCH(UKATO-
pa, IpeAHa3HAuYCHHOTO M 3()(EKTUBHON KIAcCH(DUKAUK IEJIEBBIX ceHCMOaKycTHUeCKuX coObIThil. CpaBHUBAINCH Cle-
JyIOIYe METOIbL: IOUCK COBIaJieHU Ha aHcambuie kiiaccudukaropoB (MPOEC), OycTHHT ¢ IMHEHHBIM IPOrpaMMHUpPOBAHH-
em (LP-Boost) (LP-f u LP-B moau¢ukamnum), o0ydeHne ¢ MHOKeCTBeHHbIMH  siaepHbiMH ¢yHkimsamu (MKL) u meron 00-
patubix KoHCTaHT Jlnnmuna (WILC). Beinenen WILC kax HOBBIH OJXOX K ONTHMAIBHOMY CIMSAHUIO HHQOpMAIMU Ha aH-
camOIe JUMIINLIEBBIX KIaccuPUKaTopoB. OOCYKAEHB OCHOBBI pabOThI KaXJI0TO M3 METOJOB C YKa3aHHEM CHEeIU(PUUECKUX
ocobennocreil. [Tokazano, 9To Bce METOABI OCHOBAHBI Ha CBEJICHUU MPOOIEMBI BEIOOpa MapaMeTPOB BBIMYKIONH 000JOYKH K
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ONTHUMH3ALMOHHON 3aja4e. Bee paccMOTpeHHbIE TOAXO0/bI MOTYT YCIICIIHO HUCIIOJIB30BAThCS MpU 00paboTke HHpOpMAaLUH B
C-OTDR cucremax. [IpencraBneHsl pe3yabTaThl IPAKTUIECKOTO UCTIONB30BAHMUS ITUX METOAOB.
Kurouesble cinoa: C-OTDR kanans, MKL, LP-Boost, ancamMOb JIMIIIUIEBHIX KIaCCHPUKATOPOB

Introduction

Application of the C-OTDR (Coherent Optical Time Domain Reflectometer) technology to decide various
problems of extended objects remote monitoring is currently being evaluated as a very promising approach
[1,2]. In particular, this technology can be effectively used to monitor oil and gas pipelines, controlling
technological processes and identifying unauthorized activities in close proximity of the monitored objects.
Simplistically, a C-OTDR-system consists of an infrared laser, an optical fiber and a processing unit. The laser
sends the probing signals through the optical fiber which is buried in the vicinity of the monitoring object. The
processing unit is designed for comprehensive processing of the backscattered signals, which are called speckle-
structures. The main item of the C-OTDR technology is a comprehensive analysis of the Rayleigh backscattered
radiation characteristics, which transforms into an energetically weakened pulse and propagates constantly in the
direction opposite to the direction of a pulsed laser flow. The reflected signal is created by the presence of static
impurities in the optical fiber body and defects in the microstructure. Signals scattered by the centers coherently
and randomly interfere with each other, forming so-called speckle patterns. Speckle patterns corresponding to
different sections of the optical fibers are recorded and accumulated in the data center. The slightest change of
the reflectance index value of the fiber, which occurred in a particular place, radically changes the speckle
pattern corresponding exactly to this place of the fiber. These changes are reliably detected by the data center.
The local changes in refractive index occur under the impact of temperature or due to mechanical action on the
optical fiber surface. Let us call the optical fiber buried in the soil to a depth of 50-100 cm, a fiber optical sensor
(FOS). Mechanical stress on the FOS surface is caused by seismic acoustic waves. These waves are generated of
the sources of elastic vibrations (SEV) which located in vicinity of laying the FOS. Upon reaching the FOS,
seismoacoustic wave causes a local longitudinal microstrain on its surface. Those microstrains in turn, cause a
change in the local refractive index of light in a relatively small sector of the FOS. As a result, the speckle
pattern, which corresponds to this sector, changes significantly. Thus, the FOS quite accurately reflects the state
of the seismoacoustic field in its vicinity. The seismoacoustic field contains information about events that occur
in the surface layers of the ground near the FOS. This field is created by structural waves, which generated due
to mechanical effects on the soil or as a result of a seismic activity. Walking or running man, traffic, earthworks,
including hand digging are typical sources of the seismoacoustic emission (structural acoustic wave). In this
case, the frequency range of the seismoacoustic waves is in the interval of 0.1 Hz to 1000 Hz. The information,
which is required for correct identify the type of SEV, is concentrated in the frequency range of 0.1 Hz to
500 Hz, while 95% of the meaningful information is in even the more narrow range of 1 Hz to 350 Hz. The
spectral characteristics of the target signals which lie above and below this frequency range carry information
only about the individual characteristics of the SEV. The SEV, which are subjects of interest for remote C-OTDR
monitoring will be called a target SEV (TSEV). For the convenience of data processing, the entire FOS length is
broken to successive portions (sites) each has length around 10-15 m. The data from those sites is processed

separately. These sites will be called C-OTDR channels or just channels. Width of the channel A, depends on

the probe pulse length. In practice, TSEV has its own small size and assumed point. Due to the nature of the
elastic oscillation, the wave from a point source of seismoacoustic emission is usually detected simultaneously in
several C-OTDR channels. At the same time, due to strongly anisotropic medium of the elastic vibrations
propagation, the structure of the oscillations (speckle patterns) varies considerably between different C-OTDR
channels. In each channel a time-frequency characteristics of the speckle pattern are largely reflect a time-
frequency structure of the SEV, which occur in vicinity of the corresponding channel. The oscillation energy is
considerably attenuated and distorted during propagation in the environment. Intensity of attenuation and
distortion depend on the average absorption factor of the medium and on the distance from the oscillation point
to the location of channel. Accordingly there is always one channel, wherein vibrations of the TSEV reflected
substantially intense than in other channels. We will call this channel dominant. C-OTDR systems perform three
major tasks in the following sequence:
1. task “D” (Detection) — detection of the TSEV;
2. task “E” (Estimation) — estimate of the location of the TSEV;
3. task “C” (Classification) — classification of detected TSEV by means of assigning it to one of D priori given
classes.

In the multichannel case, the task “C” has to be solved by creation the method of effective multichannel
data fusion. There are number of various approaches to effective multichannel data fusion for task “C”
(classification). This paper describes results of a comparing various multichannel data fusion approaches for
TSEV classification including a brand new approach which based on weighing of inversely as Lipschitz
Constants (WILC) and it allows to improve the generalization ability of the classification system.
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Designations and Research objective

Let us denote:
— C-OTDR channels. Ch(K,) is k-th C-OTDR channel, where a tuple K, = (A ,R,) , here A, is an absorp-

tion coefficient of k-th channel, R, is a length of k-th channel;
— Feature. A tuple ( Z,d ) is a compact feature space where Z is a set of feature values, d is a metric of Z ,
data of all channels belongs to Z ;

— Set of SEV classes. A set O is a finite set of indexes of SEV-classes, |®| =D;
— Training Set. Z ={(z.0)i=1L.N}, [(z.0)}|=N. Z ={z,.z,...2z,,}, 6,€©, each of

z, € Z,k €{l,..,m} , corresponds to Ch(K, ), and to o, ;
— True index of SEV class. A 0" €© is a true index of the SEV-class to which the samples z, belong,
thus 0" is an index of a target class;

— Samples to classify. A set Z = {z] ,zz,,..,zm}[O,l] is feature sample set; each of z, € Z,k € {l,....m}, corre-
sponds to Ch(K, ) ; in another words, we obtain the feature sample z, from k-th channel Ch(K,);

— Lipschitz Margin Classifier. Let f, (6 |z, ),k IS {1,...,m};6 € O, be a binary Lipschitz Margin classifier
(LMC) [3, 4] with Lipschitz Constant (LC) L, ; £ (0]z,):Z — {9,@) \ 6} (concept: one against all); so,

classifier f,(6|-) divides the feature space (Z,d) into two classes O and ©O\0;
f (0]z, )= ( f . (0]z,), Rk) here f, (9 |z, ) eR' is discriminate (stochastic) functions (so-called score-

parameters, which shows similarity degree of a sample z, regarding to class 0<®; discriminant function

f, (6 |z, ) explicitly dependent on the index hypothesis to be tested 8 and implicitly on the index of the tar-

get class 0°; R, is the classification decision-making rule R, : 0x = Arg h(/)le%x( f (02, )) ; let us denote -

set of LMC f, (6|z,,y) parameters, which needs to be tuned during of training process; otherwise, set v
will be denoted as LMCP or LMCP v

— Ensemble of LMC (Lipschitz Classifiers Ensembles). F(0|Z) = {fk 0]z, )|k = 1,...,m} is an ensemble of

the LMC;
F,:Z—{0,©\6} is an integral classifier on the ensemble F(0]Z); FB:(F(6|F(6|Z)),R);

R:0=Arg Max (F(6]F(012))) is output of integral classifier F (6]F(8|2));
€0
~ F(0|F(®|2)) - discriminate function on the classifiers ensemble F(0|Z), F(0[F(©]2))=3p, f, (8]z,),
k
where B, = I,YBk >0 ; coefficients {Bk} are determined by various methods, which are object of our in-
k
vestigation.
So there exist m statistical independent C-OTDR channels Ch ={Ch(K,)|k =1,...,m} . Each of those
channels depends of external (environmental) parameters tuple K, = (A, R,) . Simply speaking, these channels

transmit signals from sources of elastic vibrations (SEV) to FOS. Thus signals z, € Z, ,k {1,..., m} are outputs
of C-OTDR channels Ch . The tuple K, defines the effectiveness of channel Ch(K,) for signal transmission.

The signals Z are contain relevant information about SEV time-frequency parameters. Every two
channels Ch(K,) and Ch(Kp) distort the SEV time-frequency parameters by differently because of external
parameters K, and K are different. Accordingly we suppose every two different samples z, and z, are
statistically independent if k = p. For each C-OTDR channel Ch(K,) are used appropriate D binary classifiers
f (0,12,), 0, €©.Each LMC f, (6, |z,), is binary classifier, which divides the feature space (Z,d) into two
classes 6, and ®\9,.

So, we need to classify of the SEV type using observation Z of C-OTDR channels Ch. An obvious
approach to solving this problem is to use the Lipschitz Classifiers Ensembles (F(6|Z)). But the problem of

effective multichannel data fusion arises. There are number of various approaches to multichannel data fusion.
The goal of this paper is to compare some data fusion methods effectiveness. A number of known

124 Hay4Ho-TexHWYeCKnii BECTHUK MHDOPMALIMOHHBIX TEXHONOMNIA, MEXaHUKN 1 ONTUKK,
2015, Tom 15, Ne 1



A.B. Tumodpees

approaches and one a brand new method were studied. The brand new method is based on use of Lipschitz
constants of LMC's.

Some Approaches to C-OTDR Multichannel Data Fusion for Multiclass Classification of TSEV

So the classification problem TSEV is reduced to the task of creating an effective multiclass classificator
(MC) which is based on a LMC classifiers ensemble (Lipschitz Classifiers Ensembles). We remark that an
ensemble of classifiers is a set of classifiers whose individual decisions are combined in some way (typically by
weighted or unweighted voting) to classify new examples [5]. At any rate a MC learning method choice is a
dominant problem. Usually the problem of learning a MC from training data is often addressed by means of
kernel method (KM) [6-8]. In this case each kernel corresponds to an appropriate channel of the set Ch . For
brevity we will not describe the baseline of this well-known method but we are going to pay attention to some
KM modifications which are designed to work with LMC classifiers ensembles.

For the sake of simplicity, we will consider as a LMC a classic SVM [9]. By definition a SVM

discriminant function f, (9 |z, ,\y) depends on the parameters o € R" (N is a power of the training set Z, ) and
beR'. Here a is a normal vector to the hyperplane, |b|/ ||(x|| is the perpendicular distance from the hyperplane to

the origin. Thus we have y = {a, b} , and each tuple y defines the hyperplane in the feature space.

Multiple Kernel Learning (MKL)
In contrast to baseline kernels selection (“averaging kernels” and “product kernels” [8]), MKL kernel
selection is to learn a kernel combination during the training phase of the algorithm. So, the MKL objective is to

optimize jointly over a linear combination of kernels g (Z“),Z“)) =y Bk, (zki V2 ) with LMCP y = {a,b}.

0 _ ) _
Here 7V ={z;,2,,...2,;}, Z —{zlj,zzj,..., ni

z }, %Bk =1LB, =0, Kk, (,) is kernel function. MKL was
k=1
originally introduced in [6]. Let us denote Q,(Z)=(q,(Z,Z,).q,(Z.Z,)....6(Z,Z,))eR" ,i=1,..,m. The final

decision has form F,, (Z)= Arg l\g[E%X(ZELlBk,S (Qk (Z)T o, +h, )) . The choice of parameters MKL is made by
using for each 0 the following scheme:

T&g[o.s(zp: B, 00 Qe ) +CX,(D(0,b, + LB ,QF (Z;)aB, ))} sb.t. éﬁk’e =1,8,,>0.

D(G,t) = max(O,l - Ot) , (Zi .0, ) € Z, . In other words, in MKL case we optimize jointly the convex hull
of kernels. Here for each 6 we have the same LMCP v, ={a,,b,} for different k.

LP-Boost (LP-)
So, we will consider a case when classifiers f, (9 | zk) of ensemble F (9|F(9 | Z)) are not trained jointly,

but coefficients {ﬁk} are determined jointly. Here we have a situation where LMCP tuples v, are different for
different k. This method is called the B-LP-Boost [10, 11], and here the final decision has the form

T
Fiop(@) = At Max(S7_ B, (Q,(2) oy, +h,)).
The training phase comes down to an optimal choice of parameters {Bk } . This choice is performed by us-

ing standard optimization method (linear programming — LP) according to the following scheme:

. 1 (X
pin(-o+ o (Es))
under the condition Y B, (kk (Z,Z;) oy, +be,’k)—Argl})/vla0{<ZE‘:1 Be (K (Z.Z;) gy +byy ) +E 2,

i=1..,N, in =1B, 20,k =1,.m. Here § — slack variables, v — regularization constant, which is chosen
k=1

using Cross Validation (CV). In frame of this approach not need provide the normalization of kernels k, () .

Moreover, features for which B, =0 need not to be computed for the final decision function.
LP-Boost (LP-B)
Another version of LP approach to choice {Bk} was called B-LP-Boost [11, 12]. In this case, each class

has its own weight vector. So, we have (m x D) weighting matrix B. The final decision has the form
T
Fps(Z) = Arg I\Q{%X(ZELlBﬁ (Qk (Z) Oy +Dy )) .

Choice of parameters {ﬁk } we make in such way:
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min( 0+ (3 )

under the condition i By (K, (Z,Z; ) ey +by )= ZiLBY (K (Z,Z,) 0oy +Dy0, )+ & 2 p,
i=1..,N,0'=0", V@,mz(iBﬁ = I,Bﬂ >0,k = 1,..m). As above, here & are slack variables, v — regularization
k=1

constant, v is chosen using CV. Here we have a linear programming problem too, but this problem is more
expensive because of dimension increasing.

Matching Pursuit Optimization Ensemble Classifiers

The matching pursuit optimization approach was described in [13]. In [14] a new method that Matching
Pursuit Optimization Ensemble Classifiers (MPOEC) was proposed in order to eliminate some useless or similar
classifiers from the whole ensemble to improve the performance of ensembles without decreasing the diversity
among classifiers. So, in frame of MPOEC, we adopt a greedy iterative approach [13] to search for an optimal

combination of classifiers. We describe this approach very briefly. So, let Z, = {(Zi .0, )} is the training set and

we have a finite dictionary D = {dl,dz,...,dM} including M functions. The D is given in given in the Hilbert
Space H. We can try to find some target function ge H, Z ——» ® . The sparse approximations of g can be

found out in the dictionary D, which is expansion of the form q, =¥ _0,9,,Va, € R' , P is the number of the
n

basis functions (BF) in the expansion, {g, } < D is basis of the expansion, {a,} is the set of coefficient of this

expansion. The g, is sparse approximation of function ¢. The approximation ¢, is built with usage of P basis
functions from D. The approximation error has the following simple for

IRl =lla-a: I = 2. (6, -0 ()"

The basis function {g,} and the coefficients {a,} are selected by applying the iterative greedy method,
in the interest to minimizing the R, . So, in frame of MPOEC approach, the ensemble of classifiers F(0|Z) is
regarded as a BF of the dictionary D, and each LMC f, (9 |z, ) €F(0|Z) obtains the coefficient a, by
minimizing R, . As result of MPOEC procedure usage, the content of ensemble F(0|Z) is changed. If a, #0,
the corresponding classifier f, (0|z,) remains in ensemble, otherwise the f, (6|z,) is eliminated of ensemble
F(0|Z) . On each of MPOEC procedure iteration t we have the various combination F,(0|Z) of LMC from

F(0|Z). For convenience let us denote an index of LMC inside the temporary combination K (0|Z)
(temporary ensemble) as j. On each iteration t the prediction error is calculated as following

e =N"'ZM (6,-0,(2))= N-lziNzl(ei ~sign(2! _a, fj(e|zji))).

Here Z, = {z” V2 ,...,zmi} , t — number of iteration, @; is the coefficient gained in j-th iteration. On each iteration

t the resides R, refined by the formula R, =R,_, —a,f,(-), and coefficients {aj} are calculated as following

formula o, =(f,R_)|f ||_2, j= 1,...|Ft ()| . The MPOEC procedure iterations are repeated until prediction error
e 1is more than prior given threshold A >0. So, the MPOEC method selects LMC according to diversity

between a pair of LMC to increase the diversity of the ensemble F () . On the other hand, the increase in the

diversity will not reduce the accuracy of individual classifiers in the optimization process of MPOEC approach.

MKL Weighing of Inversely as Lipschitz Constants (WILC-MKL)

Let us consider the brand new modification of the MKL that differ from classical MKL by method choice
of linear combination parameters. The motivation of this approach is using some intrinsic properties of LMC.
The fact is that value of Lipschitz Constant significantly determines of the LMC properties. Simply speaking, the
Lipschitz classifier decision function has to a small Lipschitz constant. This feature comes from well-known
regularization principle, which recommends avoid using discriminative functions with a high variation. So,
LMC’s with small LC are more preferable for providing of stable classification process. In other words,
classifiers with small LC provide the greater generalization ability of classification system: such difficulties have

lower complexity to avoid overfitting. Hence, in formula of F(9|F(9|Z)) LMC’s with small LC must get

weight coefficients with bigger value. Let us call this approach to modification of MKL as Weighing of Inversely
as to value of the Lipschitz Constant (WILC) or WILC-MKL. In frame of WILC-MKL approach to LMC-
ensemble F(0|Z) we have the following discriminative function:
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Fuc (Z2) = Arg l\glE%X(ZLlGo,kBk,o (Qk (Z )T o, +b, ))
Here o, =L ( LB )7I k=1..m, o, B >0, 6B =1, L, is Lipschitz Constant of

discrimination function K, (Z)" @, +h,. Thus, using WILC-MKL, we make attempt to improve the

generalization ability of MKL by considering information about variation characteristics of classifiers
discrimination functions. As it was shown in series of practical experiments, usage of WILC-MKL allows
considerably improve the performance of LMC-ensemble in some practical cases.

Results of practical usage

All of above described methods were used for multichannel TSEV classification in C-OTDR system of
railways monitoring. This system was successfully installed on the railways test area (RTA) of Kazakhstan
Railways Company (JSC NC “KTZ”) in august of 2014, and this system continues to operate. The RTA is locat-
ed at a distance of 10 km from Astana City. The FOS which has been installed on RTA has length around
2000 m, depth of the FOS laying is 50 cm approximately, and FOS offset from rails is 5 m. Parameters of the C-
OTDR system:

— duration of the probe pulse is 50-200 ns;
— period of probe pulse belongs to the range 50-300 ps;
— laser wavelength is 1550 nm.

In this case, the main problem is to fusion of multichannel data to classify the TSEV with maximum ac-

curacy. As was said above, for each C-OTDR channel Ch(K,) are used appropriate D binary classifiers

f (0;12,), 0, €®. Each LMC f, (6, |z,) is binary classifier, which divides the feature space (Z,d) into two
classes 0, and ©\0,. Each LMC f, (-) was trained independently, and each LMC uses the same set of features
in the space ( Z, d) . The ( Z, d) is the ordinary GMM-vector space [15]. We describe the procedure for calcula-

tion of the GMM-vectors very briefly. On feature extraction phase for each speckle pattern obtained in the prob-
ing period T for each of the channel are built Linear-Frequency Spaced Filterbank Cepstrum Coefficients
(LFCCQ). In our case these features are based on 10 linear filter-banks (from 0.1 to 500 Hz) derived cepstra. Thus,
10 static and 10 first-order delta coefficients were used, giving the feature order m = 20. Further, approximation
of the probability distribution function of the feature vectors (LFCC) by semi-parametric multivariate probability
distribution model, so-called Gaussian Mixture Models (GMM), was carried. Presently, the GMM is one of the
principal methods of modeling broadband acoustic emission sources (including TSEV) for their robust identifi-
cation. The GMM of TSEV feature vectors distribution is a weighted sum of J components densities [15] and

given by the equation P(X|X5)=WSBI(X), where x is a random m-vector, w,=(W,,.w;)eR’,

-1

B,00 = (8, (0.8, () < R, ¥8, (0 =((2)" 5,1 xp -3 (x5 (11, |
A, = {(WSi Mg Zg) |1 =1, J} . In general, diagonal covariance matrices X are used to limit the model size. The

model parameters A, characterize a SEV in the form of a probabilistic density function. During training, those

parameters are determined by the well-known expectation maximization (EM) algorithm [15]. In the described
experiments value J was equal to 1024. Thus, for identification of TSEV class, each TSEV is modeled by a
GMM-vector and is referred to as his model parameters A e Z . The classic SVM with Bhattacharyya-kernel [3]
was used as the LMC.

Priori defined target classes of TSEV, which collectively makes up a finite set ® . For example, in case of
railways monitoring the array ® consists of the following TSEV classes: “train”, "hand digging the soil", "chis-
eling ground scrap”, "pedestrian", "group of pedestrian", "passenger car", "heavy equipment excavator", "easy
excavation equipment". Five alternative approaches for multichannel data fusion were compared on stage of
TSEV classification. In particular, MKL, LP-B, LP-B, MPOEC, and WILC-MKL approaches were used. The
results of using these methods as parts of the C-OTDR system are presented in Table.

In the process of using the method WILC-MKL values of Lipschitz Constants were evaluated numerically

for each LMC from ensemble F(0|Z) . The volumes of training sets were equal for each of various data fusion

approaches, but those volumes were different for various TSEV types. Presented results prove that the WILC-
MKL and LP (B and B) are more effective with respect to MKL and MPOEC approaches. At the same time,
WILC-MKL is more effective compared to MKL, but the LP-B is the best approach for a fusion of multichannel
data in C-OTDR monitoring systems. It is important; the LP-B approach requires more computing resources than
the WILC-MKL approach, wherein the accuracies of those methods are close. That is why the WILC-MLK ap-
proach is preferable from the practical point of view.
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Method Type of SEV Accuracy Volume of training set
"hand digging the soil" 76% 60
"chiselling ground scrap” 79% 60
“pedestrian” 78% 80
"group of pedestrians " 79% 30
MKL "passenger car" 79% 50
"train" 100% 150
"heavy equipment excavator" 81% 20
"easy excavation equipment” 83% 20
"shrew digging the ground” 81% 30
"hand digging the soil" 81% 60
"chiselling ground scrap” 83% 60
“pedestrian” 81% 80
"group of pedestrians " 83% 30
LP-p "passenger car" 80% 50
"train" 100% 150
"heavy equipment excavator" 85% 20
"easy excavation equipment” 86% 20
"shrew digging the ground” 84% 30
"hand digging the soil" 82% 60
"chiselling ground scrap” 85% 60
“pedestrian” 79% 80
"group of pedestrians " 84% 30
LP-B "passenger car" 81% 50
"train" 100% 150
"heavy equipment excavator" 86% 20
"easy excavation equipment” 88% 20
"shrew digging the ground” 88% 30
"hand digging the soil" 72% 60
"chiselling ground scrap” 79% 60
“pedestrian” 75% 80
"group of pedestrians " 80% 30
MPOEC "passenger car" 79% 50
"train" 100% 150
"heavy equipment excavator" 81% 20
"easy excavation equipment" 82% 20
"shrew digging the ground” 83% 30
"hand digging the soil" 81% 60
"chiselling ground scrap" 82% 60
“pedestrian” 78% 80
"group of pedestrians " 83% 30
WILC-MKL "passenger car" 84% 50
"train" 100% 150
"heavy equipment excavator" 84% 20
"easy excavation equipment" 87% 20
"shrew digging the ground” 86% 30

Table. The practical detection results
Conclusions

This paper describes results of comparison of various multichannel data fusion approaches for TSEV
classification including MKL, LP-B, LP-B, MPOEC and WILC-MKL. The practical usage of these approaches
proves better effectiveness of LP-B approach to fusion of multichannel data for classification of TSEV type. A
brand new approach, WILC-MKL, was suggested for multichannel data fusion. This approach is simple to use
and performs well in a C-OTDR classification subsystem.
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