

НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ. МЕХАНИКИ И ОПТИКИ

ISSN 2226-1494

May-June 2015

Том 15 № 3

Vol. 15 No 3

ISSN 2226-1494 SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS

http://ntv.ifmo.ru/en

NIH GOPMALINDHHIJIK TEXHODOTNÍ. MEXAHAKA K ODTAKA

УДК 620.178.152.341.4

ОПРЕДЕЛЕНИЕ ЗНАЧЕНИЯ МИКРОТВЕРДОСТИ ПО МЕТОДУ ВИККЕРСА В МОНОКРИСТАЛЛАХ β -Ga₂O₃, ВЫРАЩЕННЫХ ИЗ СОБСТВЕННОГО РАСПЛАВА Л.И. Гузилова^а, В.Н. Маслов^{а,b}, К.Э. Айфантис^c, А.Е. Романов^{а,b}, В.И. Николаев^{а,b}

- ^а Университет ИТМО, Санкт-Петербург, 197101, Российская федерация
- ^b ФТИ им. А.Ф. Иоффе РАН, Санкт-Петербург, 194021, Российская Федерация
- с Университет Аризоны, Таксон, Аризона, 85721, США

Адрес для переписки: guzilova@hotmail.com

Информация о статье

Поступила в редакцию 27.03.15, принята к печати 21.04.15

doi:10.17586/2226-1494-2015-15-3-546-549

Язык статьи - русский

Ссылка для цитирования: Гузилова Л.И., Маслов В.Н., Айфантис К.Э., Романов А.Е., Николаев В.И. Определение значения микротвердости по методу Виккерса в монокристаллах β-GA2O3, выращенных из собственного расплава // Научно-технический вестник информационных технологий, механики и оптики. 2015. Т. 15. № 3. С. 546–549.

Аннотация

Приведены результаты исследования значения микротвердости монокристаллов β-Ga₂O₃ для грани (001), выращенных методом свободной кристаллизации на установке «Гранат-2М». Значения микротвердости в монокристаллах β-Ga₂O₃ определялись по методу Виккерса при различных величинах нагрузки. В качестве индентора применена четырехгранная алмазная пирамида. Усредненное значение микротвердости оксида галлия составило 8,91 ГПа. Проведено сравнение полученных величин со значениями микротвердости для других широкозонных полупроводников эпитаксиальных слоев GaN, выращенных на подложках 6H-SiC, и слоев GaP, выращенных на подложках GaP:S. Результаты работы могут быть полезны при разработке технологического процесса механической обработки монокристаллических подложек β-Ga₂O₃. В частности, для механической обработки могут рекомендоваться карбид кремния и электрокорунд.

Ключевые слова

оксид галлия, широкозонный полупроводник, микротвердость, метод Виккерса.

Благоларности

Настоящее исследование поддержано Российским научным фондом (Грант РНФ №14-29-00086).

DETERMINATION OF VICKERS MICROHARDNESS IN β-Ga₂O₃ SINGLE CRYSTALS GROWN FROM THEIR OWN MELT L.I. Guzilova^a, V.N. Maslov^{a,b}, K.E. Aifantis^c, A.E. Romanov^{a,b}, V.I. Nikolaev^{a,b}

- ^a ITMO University, Saint Petersburg, 197101, Russian Federation
- ^b Ioffe Institute RAS, Saint Petersburg, 194021, Russian Federation
- ^c University of Arizona, Tucson, Arizona, 85721, USA

Corresponding author: guzilova@hotmail.com

Article info

Received 27.03.15, accepted 21.04.15

doi:10.17586/2226-1494-2015-15-3-546-549

For citation: Guzilova L.I., Maslov V.N., Aifantis K.E., Romanov A.E., Nikolaev V.I. Determination of Vickers microhardness in β-Ga₂O₃ single crystals grown from their own melt. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol.15, no. 3, pp. 546-549.

The results of microhardness measurements of β -Ga₂O₃ single crystals for (001) crystallographic face are reported. The crystals were grown by the free crystallization with the "Garnet-2M" equipment. Microhardness values were determined by the Vickers method at varying loads. A four-sided diamond pyramid was used as an indenter. The average value of gallium oxide microhardness was equal to 8.91 GPa. We have carried out comparison of the values obtained with the microhardness for the other wide bandgap semiconductors - epitaxial GaN layers grown on 6H-SiC and GaP layers grown on GaP:S. The findings are usable for machining process development of β-Ga₂O₃ single crystal substrates. In particular, silicon carbide and electrocorundum may be recommended for β-Ga₂O₃ machine processing.

Keywords

gallium oxide, wide band gap semiconductor, microhardness, Vickers hardness test.

Acknowledgements

This work has been supported by the Russian Scientific Foundation (Grant RSF № 14-29-00086).

На сегодняшний день известно несколько полиморфных модификаций кристаллов оксида галлия (α -, β -, γ -, δ - и ϵ -Ga₂O₃). Наиболее устойчивой является модификация оксида галлия (β -Ga₂O₃), которая принадлежит моноклинной сингонии, характеризуется пространственной группой C2/m и имеет следующие параметры элементарной ячейки: a=1,2214 нм, b=0,30371 нм, c=0,57981 нм, $\beta=103,83^{\circ}$ [1].

 β -Ga₂O₃ является широкозонным полупроводником n-типа с шириной запрещенной зоны около 4,9 эВ и высоким напряжением пробоя [2]. К широкозонным материалам относятся полупроводники с шириной запрещенной зоны более 2 эВ. Широкозонными полупроводниками, например, являются нитрид галлия (GaN) и фосфид галлия (GaP), имеющие ширину запрещенной зоны 3,45 и 2,2 эВ, соответственно. Широкозонные полупроводниковые материалы имеют ряд преимуществ перед другими материалами: большую область рабочих температур, возможность создания на их основе светоизлучающих приборов в видимой области спектра, высокие значения критического поля электрического пробоя, радиационную стойкость [3]. β -Ga₂O₃ благодаря своим уникальным свойствам может использоваться в различных областях науки и техники, в частности, в оптоэлектронике [4, 5]. Одним из примеров успешного применения этого материала является разработка на основе β -Ga₂O₃ Татига Corporation и Koha Co Ltd сверхъяркого светодиода, который был представлен на выставке «Lighting Japan 2013» 1 .

Технология получения таких приборов связана, в том числе, и с механической обработкой полупроводниковых кристаллов. От качества механической обработки в значительной степени зависят характеристики приборных структур. Вместе с тем надо отметить, что до настоящего момента сведений в литературе о механических характеристиках кристаллов β -Ga₂O₃ крайне мало. Отсутствуют оценки критических напряжений, которые способны выдержать моно- и поликристаллы β -Ga₂O₃. При этом отмечается, что механическое нагружение может приводить к развитию нежелательных процессов, поскольку кристаллы склонны к двойникованию. Из-за хрупкости полупроводниковых материалов их механическая обработка в основном осуществляется с использованием абразивов. В качестве абразивных материалов могут использоваться алмаз (H_V =98 ГПа), карбид кремния (27,4–34,3 ГПа), электрокорунд (17,6–23,5 ГПа), карбид бора (3,6–4,4 ГПа), галенит (1,10–1,50 ГПа) и галит (0,36–0,90) [6]. При проведении механической обработки требуется, чтобы твердость абразивного материала была больше твердости обрабатываемого материала.

В настоящей работе приведены результаты исследования микротвердости монокристаллов β -Ga₂O₃ и изменений на поверхности кристалла, связанных с механическим воздействием на него. Изучалась поверхность (001), которая является плоскостью спаянности в этом кристалле. На рис. 1 демонстрируется качество поверхности скола по спайности. В некоторых местах скола поверхность можно считать атомарно гладкой. Кристаллы, используемые в работе, были выращены методом свободной кристаллизации на установке «Гранат-2М» [7].

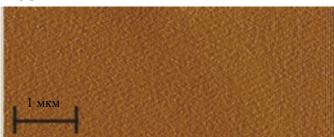


Рис. 1. Изображение поверхности (001) монокристалла β -Ga₂O₃, полученное с помощью атомно-силового микроскопа

Измерение микротвердости образцов монокристаллов β -Ga₂O₃ проводилось по методу Виккерса при помощи микротвердомера ПМТ-3. Суть методики заключается в том, что в исследуемый образец вдавливается индентор в форме четырехгранной алмазной пирамиды Виккерса. По размеру отпечатка (рис. 2), оставленного индентором, определяется значение микротвердости. При использовании пирамиды Виккерса микротвердость H_V вычисляется по формуле, связывающей H_V с отношением приложенной к индентору нагрузки P к квадрату диагонали d полученного отпечатка [8]:

$$H_V = \frac{1,854P}{d^2} \,.$$

Полученные значения микротвердости по Виккерсу монокристаллов β- Ga_2O_3 для грани (001) при различных нагрузках показаны на рис. 3. Отметим, что эти значения несколько отличаются от данных, приведенных Tamura Corporation²: 9,7 ГПа (101), 12,5 ГПа ($\bar{2}01$), что, по-видимому, связано с анизотропи-

1

¹ Tamura and Koha Demonstrate White LED Using Gallium Oxide at Lighting Japan 2013 [Электронный ресурс]. Режим доступа: www.led-professional.com/technology /light-generation/tamura-and-koha-demonstrate-white-led-using-gallium-oxide-at-lighting-taiwan-2013, свободный. Яз. англ. (дата обращения 03.03.2015)

² Single-Crystal Gallium Oxide Substrates [Электронный ресурс]. Режим доступа: http://www.tamura-ss.co.jp/en/release/20131122. Свободный. Яз. англ. (дата обращения 03.04.2015).

ей свойств в кристаллах β -Ga₂O₃. На рис. 3 показаны также сравнительные величины микротвердости β -Ga₂O₃ с известными данными для эпитаксиального слоя GaN толщиной 4,8 мкм, выращенного на Si грани поверхности (0001) подложки 6H-SiC [9], и эпитаксиального слоя GaP толщиной 7 мкм, выращенного на подложке GaP:S [10] (таблица). Видно, что β -Ga₂O₃ превосходит по микротвердости эпитаксиальные слои фосфида галлия, но уступает нитриду галлия.

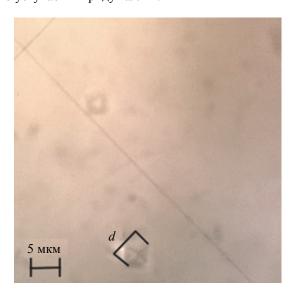


Рис. 2. Изображение отпечатка на поверхности (001) кристалла β -Ga₂O₃, оставленного индентором (алмазной пирамидкой) при нагрузке на нее 1 H; d – диагональ отпечатка

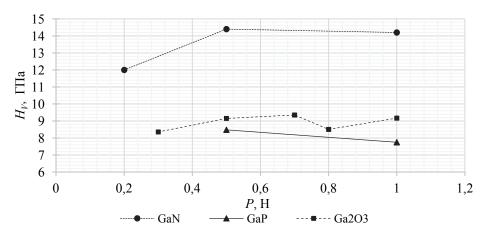


Рис. 3. Зависимость микротвердости кристаллов β-Ga₂O₃, GaN, GaP от нагрузки

	Кристаллографическая	Нагрузка <i>Р</i> , Н					
Материал	ориентация плоскости кристаллов	0,2	0,3	0,5	0,7	0,8	1,0
β-Ga ₂ O ₃	(001)	_	8,356	9,151	9,351	8,504	9,168
GaN	(0001)	12,0	_	14,4	_	_	14,2
GaP	(111)	_	_	8,48	_	_	7,75

Таблица. Значение величин микротвердости H_V (ГПа) кристаллов β-Ga₂O₃, GaN, GaP в зависимости от нагрузки

В результате проведенных исследований определено среднее значение микротвердости H_V монокристаллов β -Ga₂O₃ для грани (001) H_V = 8,91 ГПа в диапазоне нагрузок 0,3–1,0 ГПа. Отсюда мы можем заключить, что при механической обработке подложек на основе β -Ga₂O₃ разумно использовать абразивные материалы обычной твердости (карбид кремния, электрокорунд), которые, однако, имеют большую твердость, чем β -Ga₂O₃.

Литература

- 1. Galazka Z., Uecker R., Irmscher K., Albrecht M., Klimm D., Pietsch M., Brützam M., Bertram R., Ganschow S., Fornari R. Czochralski growth and characterization of β -Ga₂O₃ single crystals // Crystal Research and Technology. 2010. V. 45. N 12. P. 1229–1236. doi: 10.1002/crat.201000341
- 2. Hwang W.S., Verma A., Peelaers H., Protasenko V., Rouvimov S., Xing H., Seabaugh A., Haensch W., Van de Walle C., Galazka Z., Albrecht M., Fornari R., Jena D. High-voltage field effect transistors with wide-bandgap β -Ga₂O₃ nanomembranes // Applied Physics Letters. 2014. V. 104. N 24. Art. 4884096. doi: 10.1063/1.4884096
- 3. Лебедев А.А., Челноков В.Е. Широкозонные полупроводники для силовой электроники // Физика и техника полупроводников. 1999. Т. 33. № 9. С. 1096–1099.
- 4. He H., Blanco M.A., Pandey R. Electronic and thermodynamic of β -Ga₂O₃ // Applied Physics Letters. 2006. V. 88. N 26. Art. 261904. doi: 10.1063/1.2218046
- 5. Oshima T., Okuno T., Fujita S. Ga₂O₃ thin films growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors // Japanese Journal of Applied Physics, Part 1. 2007. V. 46. N 11. P. 7217–7220. doi: 10.1143/JJAP.46.7217
- 6. Юзова В.А., Шелованова Г.Н. Актуальные проблемы современной электроники и наноэлектроники: пособие по курсовой работе. Красноярск: ИПК СФУ, 2009. 122 с.
- 7. Маслов В.Н., Крымов В.М., Блашенков М.Н., Головатенко А.А., Николаев В.И. Выращивание кристаллов β -Ga₂O₃ из собственного расплава // Письма в журнал технической физики. 2014. Т. 40. № 7. С. 56–61.
- 8. Боярская Ю.С. Деформирование кристаллов при испытаниях на микротвердость. Кишинев: Штиинца, 1972. 235 с.
- 9. Николаев В.И., Шпейзман В.В., Смирнов Б.И. Определение модуля упругости эпитаксиальных слоев GaN методом микроиндентирования // Физика твердого тела. 2000. Т. 42. № 3. С. 428–431.
- 10. Бринкевич Д.Н., Вабищевич Н.В., Вабищевич С.А. Физико-механические свойства эпитаксиальных слоев фосфида галлия // Вестник Полоцкого государственного университета. Серия С: Фундаментальные науки. 2010. № 9. С. 92–97.

Гузилова Любовь Игоревна	-	студент, Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация, guzilova@hotmail.com
Маслов Виктор Николаевич	-	ведущий инженер, Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; аспирант, ФТИ им. А.Ф. Иоффе РАН, Санкт-Петербург, 194021, Российская Федерация, Maslov vn@hotmail.com
Айфантис Катерина Элиас	_	PhD, профессор, Университет Аризоны, Таксон, Аризона, 85721, США, aifantis@email.arizona.edu
Романов Алексей Евгеньевич	_	доктор физико-математических наук, профессор, Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; ведущий научный сотрудник, ФТИ им. А.Ф. Иоффе РАН, Санкт-Петербург, 194021, Российская Федерация, Alexey.romanov@niuitmo.ru
Николаев Владимир Иванович	_	кандидат физико-математических наук, доцент, Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; старший научный сотрудник, ФТИ им. А.Ф. Иоффе РАН, Санкт-Петербург, 194021, Российская Федерация, Vladimir.i.nikolaev@gmail.com
Lyubov I. Guzilova	-	student, ITMO University, Saint Petersburg, 197101, Russian Federation, guzilova@hotmail.com
Victor N. Maslov	_	leading engineer, ITMO University, Saint Petersburg, 197101, Russian Federation; postgraduate, Ioffe Institute RAS, Saint Petersburg, 194021, Russian Federation, Maslov vn@hotmail.com
Katerina E. Aifantis	_	PhD, Professor-researcher, University of Arizona, Tucson, Arizona, 85721, USA, aifantis@email.arizona.edu
Alexey E. Romanov	-	D.Sc., Professor, ITMO University, Saint Petersburg, 197101, Russian Federation; leading scientific researcher, Ioffe Institute RAS, Saint Petersburg, 194021, Russian Federation, Alexey.romanov@niuitmo.ru
Vladimir I. Nicolaev	-	PhD, Associate professor, University, Saint Petersburg, 197101, Russian Federation; senior scientific researcher, Ioffe Institute RAS, Saint Petersburg, 194021, Russian Federation, Vladimir.i.nikolaev@gmail.com