NHOOPHALNOHHAIX TEXNONOTVÁ, MELANIKKI V OTTVKK

УДК 535.343, 539.213.27 ВЗАИМОДЕЙСТВИЕ МОЛЕКУЛЯРНЫХ КЛАСТЕРОВ СЕРЕБРА, ВВЕДЕННЫХ МЕТОДОМ НИЗКОТЕМПЕРАТУРНОГО ИОННОГО ОБМЕНА, С НАНОЧАСТИЦАМИ CdS ВО ФТОРФОСФАТНЫХ СТЕКЛАХ Н.Д. Гражданов^а, Е.В. Колобкова^а, Ж.О. Липатова^а

^а Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация

Адрес для переписки: nikolai-grazhdanov@yandex.ru

Информация о статье

Поступила в редакцию 19.05.15, принята к печати 27.07.15 doi:10.17586/2226-1494-2015-15-5-856-862

Ссылка для цитирования: Гражданов Н.Д., Колобкова Е.В., Липатова Ж.О. Взаимодействие молекулярных кластеров серебра, введенных методом низкотемпературного ионного обмена, с наночастицами CDS во фторфосфатных стеклах // Научно-технический вестник информационных технологий, механики и оптики. 2015. Т. 15. № 5. С. 856–862.

Аннотация

Стекла с металлическими и полупроводниковыми наночастицами являются перспективными нелинейными и люминесцентными материалами фотоники. Теоретически было показано, что для усиления нелинейного эффекта Керра оптимальны композитные оптические материалы, содержащие полупроводниковое CdS-ядро с металлической Адоболочкой, или наоборот. Взаимодействие такого ансамбля наночастиц приводит к появлению островковой структуры из серебра на частице CdS, причем образование соединения акантита Ag₂S на границе двух фаз (CdS-Ag) минимально. В стеклах синтез квантовых точек CdS происходит в результате термообработки вблизи температуры стеклования, а введение серебра осуществляется методом низкотемпературного ионного обмена. Целью работы было исследование влияния серебряного ионного обмена на рост наночастиц CdS. В данной работе были исследованы два стекла – без CdS (стекло 1) и с CdS (стекло 2), которые были подвергнуты ионному обмену при T=320 °C в течение 10, 20 и 30 минут и последующей термообработке при температурах 410 и 420 °С. Для стекла 1 после проведения ионного обмена возникает интенсивная люминесценция в области 400-500 нм, а после термообработки наблюдается поверхностный плазмонный резонанс на λ=410 нм. Для стекла 2 после проведения ионного обмена наблюдаются изменение спектров поглощения, характерное для формирования акантита, и слабая люминесценция, сдвигающаяся в длинноволновую область (от 550 до 700 нм) при проведении ионного обмена и термообработки, что свидетельствует о росте квантовых точек CdS. Экспериментально показано, что для стекла 2 без ионного обмена, содержащего квантовые точки CdS, кватовый выход увеличивается до 70%, в то время как стекло с серебром имеет резкое уменьшение квантового выхода до 0%. Это уменьшение обусловлено формированием на поверхности квантовой точки CdS акантита Ag₂S.

Ключевые слова

молекулярные кластеры серебра, наночастицы CdS, ионный обмен, фторфосфатные стекла.

Благодарности

Работа выполнена при государственной финансовой поддержке Российского научного фонда (Соглашение № 14-23-00136).

INTERACTION OF SILVER MOLECULAR CLUSTERS, INTRODUCED BY LOW-TEMPERATURE ION EXCHANGE METHOD, WITH NANOPARTICLES OF CdS IN FLUORINE PHOSPHATE GLASSES

N.D. Grazhdanov^a, E.V. Kolobkova^a, Zh.O. Lipatova^a

^a ITMO University, Saint Petersburg, 197101, Russian Federation Corresponding author: nikolai-grazhdanov@yandex.ru

Article info

Received 19.05.15, accepted 27.07.15 doi:10.17586/2226-1494-2015-15-5-856-862

Article in Russian

For citation: Grazhdanov N.D., Kolobkova E.V., Lipatova Zh.O. Interaction of silver molecular clusters, introduced by low-temperature ion exchange method, with nanoparticles of CdS in fluorine phosphate glasses. *Scientific and Technical Journal of Information Technologies, Mechanics and Optics*, 2015, vol. 15, no. 5, pp. 856–862.

Abstract

Glasses with metallic and semi-conductive nano-particles appear to be perspective non-linear and luminescent materials of photonics. It was shown in theory that composite optical materials containing semi-conductive CdS-core with Ag shell (or vice versa) are optimal for enhancement of non-linear Kerr effect. Interaction of such an ensemble of particles leads to the

forming of Ag island structures on the CdS particle, and formation of acanthite Ag₂S on the two phases border (CdS-Ag) is minimal. In glasses synthesis of CdS quantum dots occurred due to thermal treatment close to glass transition temperature; introduction of silver was realized by low-temperature ion exchange (LIE). The main object of this work is investigation of Ag⁺-LIE effect on the growth of CdS nano-particles. Two glasses were explored in this work: without CdS (glass 1) and with CdS (glass 2), processed by LIE at the temperature of 320°C for 10, 20 and 30 minutes and subsequent heat treatment at temperatures of 410°C and 420°C. In case of glass 1, intensive luminescence appears as a result of LIE, and subsequent heat treatment results in surface resonance at λ =410 nm. In case of glass 2, absorbance spectra change appears that is specific for formation of acanthite and weak luminescence shifting to long-wavelength region (from 550 to 700 nm) as a result of applying LIE and heat treatment. It indicates the growth of CdS quantum dots. Experiment has shown that quantum efficiency increases to 70% for glass 2 containing CdS quantum dots without LIE, while glass that contains silver shows steep decrease of quantum efficiency to 0%. That decrease is caused by formation of acanthite Ag₂S on the surface of CdS quantum dot.

Keywords

silver molecular clusters, CdS nanoparticles, ion exchange, fluorine phosphate glasses.

Acknowledgements

This work was financially supported by the Russian Scientific Foundation (Agreement No. 14-23-00136).

Введение

В связи с развитием мощных лазерных технологий металлические и полупроводниковые наночастицы привлекают значительное внимание исследователей. Полупроводниковые наночастицы в стеклах рассматриваются как перспективный нелинейный оптический материал, так как они обладают высокой оптической восприимчивостью третьего порядка. Однако для практического применения их нелинейнооптический отклик слишком мал. В работах [1, 2] показано, что нелинейно-оптический отклик (χ^3 и добротность) можно значительно на несколько порядков усилить за счет поверхностного плазмонного резонанса (ППР), возникающего при одновременном создании металлических и полупроводниковых наночастиц в стеклах. Предполагается, что феномен оптического усиления возникает при создании сферического композитного материала, состоящего из полупроводникового ядра с металлической оболочкой, и наоборот.

Особый интерес представляет композит CdS-Ag. Квантовые точки (КТ) сульфида кадмия (CdS) имеют значительный нелинейный отклик благодаря экситонному резонансу, в то время как серебро среди всех металлов имеет наиболее выраженный резонанс Ми. В литературе предложены различные методы получения покрытия наночастиц CdS серебряной оболочкой: метод расплава/закалки [3] и техника осаждения. Показано, что нанокомпозиты, содержащие металлическую оболочку, имеют высокую внутреннюю нелинейно-оптическую бистабильность [4]. Также молекулярные кластеры (МК) и КТ на основе широкозонных полупроводников, таких как CdS, обладают люминесцентными свойствами в видимой и ближней инфракрасной областях спектра.

В [5] были обсуждены особенности синтеза в жидкой среде и оптические параметры наночастицы CdS с серебряной оболочкой. Было показано, что на поверхности CdS формируется островковая структура из серебра, но не исключается возможность появление промежуточной фазы – акантита Ag₂S.

Для ответа на вопрос, как взаимодействуют два ансамбля полупроводниковых и металлических наночастиц, были синтезированы два стекла: стекло 1 – исходное, не содержащее CdS, и стекло 2, содержащее CdS. На стеклах 1 и 2 был проведен ионный обмен. Для анализа оптических свойств стекол были измерены спектры поглощения, люминесценции и квантового выхода. Целью настоящей работы являлось исследование взаимодействия серебра, введенного методом низкотемпературного ионного обмена, и полупроводниковых наночастиц CdS во фторфосфатном стекле системы 0,5P₂O₅-0,25Na₂O-0,1Ga₂O₃-0,05AlF₃-0,04ZnF₂-0,05NaF, активированном 0,01CdS.

Метод и эксперимент

В качестве основы для создания стекла была выбрана фторфосфатная система 0,5P₂O₅-0,25Na₂O-0,1Ga₂O₃-0,05AlF₃-0,04ZnF₂-0,05NaF, активированная 0,01CdS. В исследуемой системе получаются гомогенные стекла, обладающие высокой прозрачностью в ближней ультрафиолетовой (УФ) и видимой областях спектра. Выбор фторфосфатной матрицы обусловлен ее высокой химической и термической стабильностью, а также возможностью введения высоких концентраций различных активаторов в сравнении с силикатными матрицами [6].

Для синтеза стекол применялись материалы марки х.ч. и ос.ч., выпускаемые отечественной химической промышленностью¹.

Взвешивание компонентов шихты проводилось на технических весах ВКЛТ-500 (точность ±0,01 г). Варка стекол проводилась в электрической лабораторной печи с силитовыми нагревателями,

¹ ГОСТ 13867-68. Продукты химические. Обозначение чистоты. Введ. 01.01.1969. М.: Изд-во стандартов, 1989. 7 с.

обеспечивающими нагрев рабочей зоны до 1450 °C. Варка стекол осуществлялась в воздушной атмосфере при температуре 950 °C в стеклоуглеродном варочном комплекте по схеме «тигель в тигель». После выработки расплава стекломассы между двумя стеклоуглеродными пластинами и получения плоского образца с толщиной 1–2 мм образцы отжигались в муфельной печи для снятия термических напряжений при температуре 320 °C.

Серебро вводилось в стекла методом низкотемпературного ионного обмена (НИО) в течение 10, 20 и 30 мин при температуре 320 °C из расплава 0,95NaNO₃+0,05AgNO₃.

Характеристические температуры для вторичной термообработки (TO) стеклокерамики были определены при анализе кривой дифференциальной сканирующей калориметрии (ДСК). Измерения и математическая обработка данных проводились на дифференциальном сканирующем калориметре STA 449F1 Jupiter фирмы Nietzsche.

Формирование наночастиц CdS_n и серебра достигалось с помощью вторичной TO стекла в течение 20 мин при температуре 410 и 420 °C (вблизи температуры стеклования T_g). Такая обработка позволяет создать относительно большую объемную долю наноразмерных кристаллов и кластеров. Для вторичной TO образцов использовалась программируемая муфельная печь Nabertherm N11/2. Исходные и подвергнутые вторичной TO стекла были отшлифованы и отполированы.

Измерение спектров поглощения осуществлялось на спектрофотометре Lambda 650 марки Perkin Elmer Precisely в диапазоне 250–800 нм с шагом 0,5 нм и временем интегрирования 0,2 с. Спектральные измерения люминесценции (300–900 нм) проводились на спектрофлуориметре MPF-44A (Perkin Elmer) с шагом 0,5 нм. Кинетика затухания люминесценции измерялась с помощью лазера Solar Laser Systems LQ 529 В на длине волны возбуждения 410 нм, монохроматора (длина волны 620 нм), фотоэлектронного умножителя и подключенного на выходе осциллографа.

Квантовый выход был измерен с помощью установки Absolute PL Quantum Yield Measurement System на длинах волн возбуждения 250, 360 и 405 нм. Все измерения проводились при комнатной температуре.

Результаты и обсуждение

Характеристические температуры для обоснования температурно-временного режима получения стеклокерамики были определены на основании данных, полученных при анализе кривой ДСК. Термограммы исследуемых образцов представлены на рис. 1. Температуры стеклования для обоих стекол совпали и равны 400 °C. Температура TO стекла для формирования серебряных и полупроводниковых наночастиц была выбрана вблизи T_g и составила 410 °C.

Проведение НИО и ТО стекла 1 приводит к заметным изменениям в его оптических характеристиках (рис. 2). После проведения НИО в течение 10 мин в спектре стекла наблюдается заметное увеличение поглощения в области длин волн ниже 300 нм, что можно связать с вхождением в сетку стекла ионов и нейтральных атомов серебра [7], а также, учитывая сильные восстановленные условия синтеза, МК серебра. Проведение ТО в течение 20 мин приводит к возникновению полосы ППР с $\lambda_{\text{макс}}$ =410 нм. Согласно модифицированной формуле Друде–Ми [8], размер наночастиц серебра равен 4 нм.

Для анализа влияния серебра на рост наночастиц CdS стекло 2 было подвергнуто тем же процедурам, что и исходное. Введение в состав стекла 1 полупроводниковой компоненты CdS приводит к сдвигу УФ границы пропускания в сторону больших длин волн (250 нм \rightarrow 300 нм), что связано с формированием MK CdS [9]. В результате НИО происходит значительный рост поглощения, и появляется полоса поглощения с $\lambda_{\text{макс}}$ =320 нм, обусловленная формированием МК серебра [10]. Проведение TO приводит к резкому сдвигу границы пропускания в длинноволновую область, однако структурированный спектр, характерный для KT, не возникает.

Для более ясного понимания процессов, происходящих под действием ТО, стекло 2 без НИО было подвергнуто ТО при температуре 420 °C в течение 20 мин (рис. 2, б), что привело к возникновению дискретного спектра с разрешенными переходами, связанными с формированием КТ. На основании анализа положения первого возбужденного уровня (соответствующая длина волны возбужденного уровня λ_{exc} =415 нм или 3,0 эВ) и работы [11] был рассчитан размер КТ, равный 2,5 нм. Сравнение спектров стекла 2, подвергнутого одинаковой ТО до и после НИО, показывает значительные различия, что свидетельствует об изменениях в структуре сформированных наночастиц. Эти отличия могут быть связаны со стимуляцией формирования МК и КТ серебряными наночастицами, а отсутствие дискретной составляющей в спектре после ионного обмена может быть обусловлено большим разбросом КТ по размерам в области НИО. Другим объяснением трансформации спектра поглощения является возможность формирования новой фазы на границе полупроводник-металл – акантита Ag₂S. Согласно [12], частицы Ag₂S, показывают длинный хвост поглощения, покрывающий весь видимый диапазон спектра. Для уточнения версий, объясняющих наблюдаемые изменения, были измерены спектры люминесценции.

Рис. 1. Дифференциальная сканирующая калориметрия стекла 1 (а) и стекла 2 (б), «экзо» указывает направление экзотермической реакции

Рис. 2. Спектры поглощения стекла 1 (а): исходное (1), после ионного обмена (2) и после ионного обмена и термообработки (3); стекла 2 (б): исходное (1), после ионного обмена (2), после ионного обмена и термообработки (3), после термообработки без ионного обмена (4) и после термообработки при *T*=420 °C (5). Вторая производная кривой (5) (в) (обозначения указывают вид перехода 1S3/21Se, 2S3/21Se и 1P3/21Pe [13])

Рассмотрим спектры люминесценции для стекла 1 и 2, представленные на рис. 3. Исходное стекло 1 не обладало собственной люминесценцией. В результате проведения НИО возникает сильная люминесценция, обусловленная люминесценцией МК Ag_{1-4} [14], которая характеризуется полосой с $\lambda_{\text{макс}}$ =450 нм. В результате ТО в течение 20 мин появляется полоса с $\lambda_{\text{макс}}$ =475 нм, свидетельствующая о росте более крупных кластеров (*n*=5–7).

Стекло 2 характеризуется полосой люминесценции $\lambda_{\text{макс}}$ =500 нм, которая в результате проведения НИО сдвигается до $\lambda_{\text{макс}}$ =580 нм. Следует отметить, что наблюдаемая люминесценция в диапазоне 500–600 нм соответствует полупроводниковым МК CdS [15].

Рис. 3. Спектры люминесценции стекла 1: после ионного обмена (1), после ионного обмена и термообработки (2); стекла 2: исходного (3), после ионного обмена и термообработки (4), после ионного обмена (5), после термообработки при *T*=420 °C (6)

ТО стекла 2 при 420 °C в течение 20 мин (без НИО) приводит к появлению полосы люминесценции с максимумом интенсивности на 675 нм, равной 1,84 эВ, что соответствует люминесценции КТ CdS. Стоксов сдвиг люминесценции составил 1,15 эВ, что позволяет предположить преимущественно ловушечный характер люминесценции, связанный с поверхностными дефектами КТ. Время жизни люминесценции для КТ CdS составило 160 мкс, что подтверждает переход люминесценции с ловушечных состояний.

Для стекол 1, 2 после НИО и ТО был оценен квантовый выход (рис. 5). Для стекла, которое содержит КТ CdS, характерно увеличение квантового выхода с 40% до 70% при увеличении длины волны возбуждения с 250 нм до 405 нм, что позволяет его использовать в качестве люминофоров. Уменьшение квантового выхода до 0% при возбуждении 405 нм для стекол после проведения НИО обусловлено взаимодействием наночастиц серебра с МК CdS. Резкое уменьшение квантового выхода склоняет к версии, что на поверхности наночастиц серебра образуется акантит, что приводит к процессу химического тушения (chemical damping) ППР [16]. Различия в значениях квантового выхода на порядок для стекол с КТ и МК характерны для этих нанообразований.

Рис. 5. Зависимость квантового выхода от длины волны возбуждения. Стекло 2 после термообработки при *T*=410 °C (1); стекло 1 после ионного обмена в течение 10 мин и термообработки – 20 мин (2); стекло 2 после ионного обмена в течение 10 мин (3);стекло 2 после ионного обмена в течение 20 и 30 мин (4) и (5) соответственно

Таким образом, спектры люминесценции показывают, что при температуре TO 410 °C при выбранным временах КТ не формируются. Происходит рост МК CdS. Это происходит, потому что формируется нанокомпозит CdS-Ag₂S, который имеет соответствующий профиль поглощения, близкий к наблюдаемому на рис. 2, б, кривая 3.

Заключение

Были исследованы фторфосфатные стекла с наночастицами CdS и с молекулярными кластерами Ag, введенными в результате проведения низкотемпературного ионного обмена.

В результате ионного обмена в стекле 1 формируются молекулярные кластеры Ag₁₋₄, а после термообработки – металлические Ag-наночастицы. Проведение ионного обмена и термообработки в стекле 2 приводит к формированию кластеров CdS, связанных с кластерами и наночастицами серебра через промежуточное соединение Ag₂S. Данное взаимодействие приводит к формированию акантита, который способствует резкому уменьшению квантового выхода при увеличении длины волны возбуждения.

References

- Fisher G.L., Boyd R.W., Gehr R.J., Jenekhe S.A., Osaheni J.A., Sipe J.E., Weller-Brophy L.A. Enhanced nonlinear optical response from composite materials. *Physical Review Letters*, 1995, vol. 74, no. 10, pp. 1871–1874. doi: 10.1103/PhysRevLett.74.1871
- 2. Kalyaniwalla N., Haus J.W., Inguva R., Birnboim M.H. Intrinsic optical bistability for coated spheroidal particles. *Physical Review A*, 1990, vol. 42, no. 9, pp. 5613–5621. doi: 10.1103/PhysRevA.42.5613
- Ko M.-J., Plawsky J., Birnboim M. Fabrication of CdS/Ag hybrid quantum dot composites using a melt/quench method. *Journal of Non-Crystalline Solids*, 1996, vol. 203, pp. 211–216. doi: 10.1016/0022-3093(96)00484-X
- 4. Neuendorf R., Quinten M., Kreibig U. Optical bistability of small heterogeneous clusters. *Journal of Chemical Physics*, 1996, vol. 104, no. 16, pp. 6348–6354.
- Rocco F., Jain A.K., Treguer M., Cardinal T., Yotte S., Le Coustumer P., Lee C.Y., Park S.H., Choi J.G. Optical response of silver coating on CdS colloids. *Chemical Physics Letters*, 2004, vol. 394, no. 4–6, pp. 324–328. doi: 10.1016/j.cplett.2004.07.022
- Kolobkova E.V., Nikonorov N.V., Aseev V.A. Optical technologies silver nanoclusters influence on formation of quantum dots in fluorine phosphate glasses. *Scientific and Technical Journal of Information Technologies, Mechanics and Optics*, 2012, no. 5 (81), pp. 1–5. (In Russian)
- 7. Wang P.W. Formation of silver colloids in silver ion-exchanged soda-lime glasses during annealing. *Applied Surface Science*, 1997, vol. 120, no. 3–4, pp. 291–298.
- Hovel H., Fritz S., Hilger A., Kreibig U., Vollmer M. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. *Physical Review B Condensed Matter and Materials Physics*, 1993, vol. 48, no. 24, pp. 18178–1818. doi: 10.1103/PhysRevB.48.18178
- Kolobkova E.V., Kukushkin D.S., Nikonorov N.V., Sidorov A.I., Shakhverdov T.A. Luminescent properties of fluorophosphate glasses with molecular cadmium selenide clusters. Optics and Spectroscopy (English translation of Optika i Spektroskopiya), 2015, vol. 118, no. 2, pp. 224–228. doi: 10.1134/S0030400X15020101
- 10. Zheng W., Kurobori T., Miyamoto Y., Nanto H., Yamamoto T. Formation and assignment of silver defect centers in phosphate glass induced by femtosecond laser pulses. *Radiation Measurements*, 2011, vol. 46, no. 12, pp. 1402–1405. doi: 10.1016/j.radmeas.2011.01.004
- 11. Martin J.L., Riera R., Cruz S.A. Confinement of excitons in spherical quantum dots. *Journal of Physics Condensed Matter*, 1998, vol. 10, no. 6, pp. 1349–1361. doi: 10.1088/0953-8984/10/6/017
- Hota G., Jain S., Khilar K.C. Synthesis of CdS-Ag₂S core-shell/composite nanoparticles using AOT/n-heptane/water microemulsions. *Colloids and Surfaces A: Physiochemical and Engineering Aspects*, 2004, vol. 232, no. 2–3, pp. 119–127. doi: 10.1016/j.colsurfa.2003.10.021
- 13. Norris D.J., Bawendi M.G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. *Physical Review B Condensed Matter and Materials Physics*, 1996, vol. 53, no. 24, pp. 16338–16346.
- Loginov E., Gomez L.F., Chiang N., Halder A., Guggemos N., Kresin V.V., Vilesov A.F. Photoabsorption of AgN (N~6-6000) nanoclusters formed in helium droplets: transition from compact to multicenter aggregation. *Physical Review Letters*, 2011, vol. 106, no. 23, art. 233401. doi: 10.1103/PhysRevLett.106.233401
- Kolobkova E.V., Kukushkin D.S., Nikonorov N.V., Sidorov A.I., Shakhverdov T.A. Luminescent properties of molecular clusters (CdS)n in fluorophosphate glass. *Glass Physics and Chemistry*, 2015, vol. 41, no. 1, pp. 104–107. doi: 10.1134/S1087659615010149
- Persson B.N.J. Polarizability of small spherical metal particles: influence of the matrix environment. *Surface Science*, 1993, vol. 281, no. 1–2, pp. 153–162. doi: 10.1016/0039-6028(93)90865-H

Гражданов Николай Дмитриевич	-	аспирант, Университет ИТМО, Санкт-Петербург, 197101,
		Российская Федерация, nikolai-grazhdanov@yandex.ru
Колобкова Елена Вячеславовна	_	доктор химических наук, профессор, Университет ИТМО, Санкт-
		Петербург, 197101, Российская Федерация, Kolobok106@rambler.ru
Липатова Жанна Олеговна	_	студент, Университет ИТМО, Санкт-Петербург, 197101, Российская
		Федерация, zluka_yo@mail.ru
Nikolai D. Grazhdanov	_	postgraduate, ITMO University, Saint Petersburg, 197101, Russian
		Federation, nikolai-grazhdanov@yandex.ru
Elena V. Kolobkova	_	D.Sc., Professor, ITMO University, Saint Petersburg, 197101, Russian
		Federation, Kolobok106@rambler.ru
Zhanna O. Lipatova	_	student, ITMO University, Saint Petersburg, 197101, Russian
		Federation, zluka_yo@mail.ru