НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ. МЕХАНИКИ И ОПТИКИ

март-апрель 2016

Том 16 № 2

ISSN 2226-1494 SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS

March-April 2016 Vol. 16 No 2 ISSN 2226-1494 http://ntv.ifmo.ru/en

NHÓOPHAUNOHHAIN TEXHODOTNÁ. MEKAHIKKI K OOTTIKA

УДК 535.317

ЛИНЗОВЫЕ КОНЦЕНТРИЧЕСКИЕ СИСТЕМЫ

К.В. Ежова^а, В.А. Зверев^а, Т.В. Точилина^а

^а Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация Адрес для переписки: tvtochilina@mail.ru

Информация о статье

Поступила в редакцию 21.12.15, принята к печати 05.02.16

doi:10.17586/2226-1494-2016-16-2-224-236

Язык статьи – русский

Ссылка для цитирования: Ежова К.В., Зверев В.А., Точилина Т.В. Линзовые концентрические системы // Научно-технический вестник информационных технологий, механики и оптики. 2016. Т. 16. № 2. С. 224–236. doi: 10.17586/2226-1494-2016-16-2-224-236

Аннотапия

Предмет исследования. Рассматриваются теоретические основы синтеза линзовых концентрических систем различного назначения на основе теории аберраций 3-го порядка. Основным отличием концентрических линзовых систем, помимо особенной геометрии самой системы, является сферическая форма поверхности изображения, радиус которой равен фокусному расстоянию всей системы. Для оптических систем такого рода необходима компенсация не только угловой сферической аберрации, но и хроматизма положения. Метод. В работе определен математический аппарат, позволяющий определить конструктивные параметры концентрических линзовых систем. Введены коэффициенты, определяющие взаимосвязь радиусов кривизны поверхностей концентрических оптических систем, что позволило преобразовать полученные аналитические соотношения в систему из двух уравнений с двумя неизвестными. Показано, что существование решения системы уравнений определяется оптическими константами выбранного материала линз. Основные результаты. Результаты анализа условий коррекции хроматической аберрации положения и рассмотренная последовательность получения системы уравнений позволили создать теоретическую базу инженерного метода параметрического синтеза линзовых концентрических систем и построить математическую модель расчета такого рода систем. Практическая значимость. Несомненная практическая значимость работы заключается в представленных примерах расчета конкретных систем с различными возможными конструкциями построения и определением угловой сферической аберрации и хроматизма положения для каждой рассчитанной системы.

Ключевые слова

система концентрических поверхностей, сферическая аберрация, хроматическая аберрация положения, первичные аберрации

CONCENTRIC LENS SYSTEMS K.V. Ezhova^a, V.A. Zverev^a, T.V. Tochilina^a

^a ITMO University, 197101, Saint Petersburg, Russian Federation Corresponding author: tvtochilina@mail.ru

Article info

Received 21.12.15, accepted 05.02.16 doi:10.17586/2226-1494-2016-16-2-224-236

Article in Russian

For citation: Ezhova K.V., Zverev V.A., Tochilina T.V. Concentric lens systems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 2, pp. 224-236. doi:10.17586/2226-1494-2016-16-2-224-236

Subject of Research. The paper discusses theoretical foundations of synthesis of concentric lens systems for various applications based on the 3rd order aberration theory. The main difference of concentric lens systems, in addition to the special geometry of the system, is an image spherical surface shape with the radius equal to the focal length of the entire system. For such optical systems compensation is required not only of corner spherical aberration, but also of chromaticity position. Method. The paper presented mathematical apparatus that allows determining the design parameters of the concentric lens systems. The coefficients were introduced determining interrelationship of the radii of curvature for the surfaces of concentric optical systems that gave the possibility to transform the obtained analytical relations in the system of two equations with two unknowns. It is shown that the existence of solutions of the system is determined by the optical constants of the selected lens material. Main Results. The results of correction conditions analysis of the chromatic aberration of position and the sequence of the resulting system of equations have provided theoretical basis for the engineering method of a parametric synthesis of concentric lens systems and developed a mathematical model for the calculation of such systems. Practical Relevance. The undoubted practical significance of the work lies in the examples of specific systems calculation with different possible designs of construction and defining the angular spherical aberration and chromatic aberration of position calculated for each system.

Keywords

system of concentric surfaces, spherical aberration, chromatic aberration of position, primary aberrations

Введение

Зеркальные и зеркально-линзовые системы, в том числе и системы концентрических поверхностей, при сравнительно высокой светосиле имеют малое угловое поле изображаемого пространства [1]. В линзовых концентрических системах угловое поле принципиально ограничено только допустимым падением освещенности в изображении внеосевых точек по сравнению с освещенностью в изображении осевой точки. Освещенность в изображении внеосевых точек, образованном системой концентрических поверхностей, пропорциональна косинусу полевого угла ω . При этом при допустимом падении освещенности в два раза угловое поле равно $2\omega = 120^\circ$. Однако поверхность изображения имеет форму сферы, радиус кривизны которой равен фокусному расстоянию системы. В изображении, образованном системой, кроме сферической аберрации, необходимо компенсировать и хроматическую аберрацию положения.

Определение угловой сферической аберрации линзовой концентрической системы

Для определения выражения, описывающего угловую сферическую аберрацию линзовой концентрической системы, рассмотрим ход луча через одиночную сферическую поверхность.

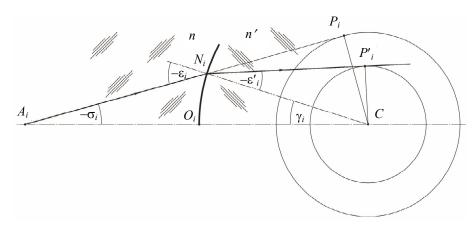


Рис. 1. Ход действительного луча через преломляющую поверхность

Обратимся к рис. 1, на котором показан путь действительного луча через преломляющую поверхность сферической формы. На этом рисунке $N_iC = r_i$, P_i — точка пересечения падающего на поверхность луча или его продолжения с нормалью к нему, опущенной из центра кривизны поверхности; P'_i — точка пересечения преломленного на поверхности луча или его продолжения с нормалью к нему из центра кривизны той же поверхности. Обозначим $CP_i = m_i$, $CP'_i = m'_i = CP_{i+1} = m_{i+1}$. Из рисунка следует, что угол

$$\gamma_i = \sigma_i - \varepsilon_i = \sigma_i' - \varepsilon_i', \tag{1}$$

где σ'_i – угол, образованный преломленным лучом с оптической осью (на рисунке не показан). Выражение (1) удобно представить в виде

$$\sigma'_i - \sigma_i = \varepsilon'_i - \varepsilon_i$$
 (2)

Тогда из выражения (2) для оптической системы из k концентрических точек C поверхностей будем иметь

$$\sigma'_{1} - \sigma_{1} = \varepsilon'_{1} - \varepsilon_{1},$$

$$\dots$$

$$\sigma'_{i} - \sigma_{i} = \varepsilon'_{i} - \varepsilon_{i},$$

$$\dots$$

$$\sigma'_{k} - \sigma_{k} = \varepsilon'_{k} - \varepsilon_{k}.$$

Сложив левые и правые части этих выражений и учитывая, что $\sigma'_i = \sigma_{i+1}$, получаем:

$$\sigma_k' - \sigma_1 + \sum_{i=1}^{i=k} \varepsilon_i' - \sum_{i=1}^{i=k} \varepsilon_i. \tag{3}$$

В соответствии с рис. 1 синус угла падения луча на і-ю преломляющую поверхность равен

$$\sin \varepsilon_i = -\frac{m_i}{r_i},\tag{4}$$

а синус угла преломления

$$\sin \varepsilon_i' = -\frac{m_{i+1}}{r_i} \,. \tag{5}$$

В соответствии с законом преломления

$$\sin \varepsilon_i' = \frac{n_i}{n_{i+1}} \sin \varepsilon_i = -\frac{n_i m_i}{n_{i+1} r_i}.$$
 (6)

Из выражений (5) и (6) находим, что для системы концентрических поверхностей справедлив следующий инвариант:

$$n_1 m_1 = n_2 m_2 = \dots = n_i m_i = n_{i+1} m_{i+1} \dots = n_k m_k = n_{k+1} m_{k+1} = R.$$
(7)

Таким образом, каждый луч, падающий в точку N_i поверхности или его продолжение, касается окружности с центром в точке C, радиус кривизны которой $m'_i = m_{i+1} = \frac{n_i m_i}{n_{i+1}}$. Применив формулы (4)–(7),

формулу (3) можно представить в виде

$$\sigma'_{k} - \sigma_{1} = \sum_{i=1}^{i=k} \arcsin \frac{R}{n_{i}r_{i}} - \sum_{i=1}^{i=k} \arcsin \frac{R}{n_{i+1}r_{i}}.$$
 (8)

При $\sigma_1 = 0$ фокусное расстояние рассматриваемой системы равно

$$f' = \frac{m_1}{\sin \sigma_k'} \,. \tag{9}$$

При $m_1 \to 0$ фокусное расстояние $f' \to f'_0$. Заметим, что в рассматриваемом случае главные плоскости совмещены и проходят через центр кривизны поверхностей системы. При этом фокусное расстояние f_0' системы равно расстоянию от центра кривизны поверхностей до осевой точки образованного изображения. Исходя из этого, можно считать, что продольная сферическая аберрация изображения, образованного системой концентрических поверхностей, равна $\Delta s' = f' - f_0'$. Дифференцируя выражение

(9) и заменяя дифференциалы конечными разностями, при
$$m = \text{const}$$
 получаем $\Delta f' = \Delta s' = -\frac{m \cos \sigma'}{\sin^2 \sigma'} \delta \sigma'$.

Тогда поперечная сферическая аберрация определится выражением $\delta g' = \Delta s' \cdot tg\sigma' = f' \cdot \delta \sigma'$. При этом сферическая аберрация в угловой мере (или угловая сферическая аберрация [2, 3]) определится отношением $\delta\sigma' = \delta g'/f_0'$, где $\delta\sigma' = \sigma_0' - \sigma'$.

В соответствии с формулой (9) угол $\sigma_k' = \arcsin \frac{m_1}{f'}$. При малой величине x угол $\arcsin x = x$. В

 $\sigma_1 = 0$ величину m_1 малой, получаем

рассматриваемом случае при малой величине $m_1(m_1 \to 0)$ величина $f' \to f'_0$. Полагая в формуле (8) при

$$\varphi_0 = \frac{1}{f_0'} = n_1 \sum_{i=1}^{i=k} \frac{1}{r_i} \left(\frac{1}{n_i} - \frac{1}{n_{i+1}} \right). \tag{10}$$

Функцию $\arcsin x$ можно представить степенным рядом:

$$\arcsin x = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \frac{5}{112}x^7 + \dots$$

Ограничиваясь в разложении в степенной ряд членами не выше третьего порядка, формулу (8) при $\sigma_1 = 0$ можно представить как

$$\sigma'_{k} = n_{1} m_{1} \sum_{i=1}^{i=k} \frac{1}{r_{i}} \left(\frac{1}{n_{i}} - \frac{1}{n_{i+1}} \right) + \frac{1}{6} n_{1}^{3} m_{1}^{3} \sum_{i=1}^{i=k} \frac{1}{r_{i}^{3}} \left(\frac{1}{n_{i}^{3}} - \frac{1}{n_{i+1}^{3}} \right). \tag{11}$$

Выражение
$$n_1 m_1 \sum_{i=1}^{i=k} \frac{1}{r_i} \left(\frac{1}{n_i} - \frac{1}{n_{i+1}} \right) = \frac{m_1}{f_0'} = \sin \sigma_{k0}'$$
. При этом из (11) $\sigma_k' = \arcsin \frac{m_1}{f'} = \frac{m_1}{f_0'} + \frac{1}{6} \frac{m_1^3}{f_0'^3}$. Полу-

ченные соотношения позволяют выражение, определяющее угловую сферическую аберрацию, представить в вид:

$$\delta\sigma' = \sigma'_{0k} - \sigma'_{k} = \frac{1}{6} \frac{m_{1}^{3}}{f'_{0}^{3}} - \frac{1}{6} n_{1}^{3} m_{1}^{3} \sum_{i=1}^{i=k} \frac{1}{r_{i}^{3}} \left(\frac{1}{n_{i}^{3}} - \frac{1}{n_{i+1}^{3}} \right)$$

или

$$\delta\sigma' = \frac{1}{6}n_1^3 m_1^3 \left\{ \sum_{i=1}^{i=k} \frac{1}{r_i^3} \left(\frac{1}{n_{i+1}^3} - \frac{1}{n_i^3} \right) - \left[\sum_{i=1}^{i=k} \frac{1}{r_i} \left(\frac{1}{n_{i+1}} - \frac{1}{n_i} \right) \right]^3 \right\}.$$
 (12)

Аберрационные свойства концентрической линзы

В простейшем случае для образования линзы необходимы две преломляющие поверхности.

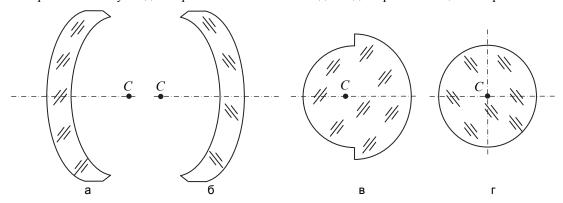


Рис. 2. Форма линз, образованных двумя концентрическими преломляющими поверхностями, при: $r_1/r_2 > 0$ (a), (б); $r_1/r_2 < 0$ (в), (г)

При $r_1/r_2 > 0$ и при $d = r_1 - r_2$ линза имеет вид концентрического мениска, как показано на рис. 2, а, б. При $r_1/r_2 < 0$ и при $d = r_1 - r_2$ имеем двояковыпуклую концентрическую линзу, как показано на рис. 2, в. При $r_1 = -r_2$ линза имеет вид шара, как показано на рис. 2, г. Рассмотрим аберрационные свойства концентрической двояковыпуклой линзы, математическую модель которой можно представить в следующем виде:

$$n_{1} = 1$$

$$r_{1} =$$

$$d = r_{1} - r_{2}$$

$$n_{2} = n$$

$$r_{2} = -\gamma r_{1}$$

$$n_{3} = 1$$

где коэффициент $\gamma > 0$. В соответствии с формулой (10) оптическая сила рассматриваемой линзы равна

$$\varphi_0 = \frac{n-1}{nr_1} \frac{1+\gamma}{\gamma} \,. \tag{13}$$

При
$$\varphi_0 = 1$$
: $r_1 = \frac{1+\gamma}{\gamma} \frac{n-1}{n}$. (14)

Применив последовательно к поверхностям линзы формулу Аббе $\frac{n'}{s'} - \frac{n}{s} = \frac{n'-n}{r}$, находим, что при $s_1 = \infty$ задний фокальный отрезок равен

$$s_2' = s_{F'}' = f_0' \frac{1 - (n - 1)\gamma}{n} \,. \tag{15}$$

Положив в выражении (15) величину $f_0' = 1$, получаем

$$\gamma = \frac{1 - ns'_{F'}}{n - 1} \,. \tag{16}$$

При $s_{F'}' = 0$ величина $\gamma = \frac{1}{n-1}$. Отсюда следует, например, что при n=2 величина $\gamma = 1$. Заметим, что выражение (16) вполне определяет конструктивные параметры линзы [4, 5]. Выражение (13) удобно переписать в виде

$$f_0' = \frac{\gamma}{1+\gamma} \frac{nr_1}{n-1} \,. \tag{17}$$

Дифференцируя выражение (17), получаем

$$df_0' = -\frac{\gamma r_1}{1+\gamma} \frac{dn}{\left(n-1\right)^2} \,. \tag{18}$$

Средняя дисперсия $n(\lambda_1) - n(\lambda_3)$, как правило, мала. Тогда, положив $n(\lambda_1) - n(\lambda_3) = \delta n$, а $n = n(\lambda_2)$, выражение (18) можно представить как

$$\delta f'_{0xp} = -\frac{1}{nu} f'_{0}, \tag{19}$$

где $\delta f_{0xp}''$ – хроматическая аберрация положения; μ – коэффициент дисперсии, $\mu = \frac{n(\lambda_2) - 1}{n(\lambda_1) - n(\lambda_3)}$.

Вполне очевидно, и это легко проверить, что $\delta f'_{0\mathrm{xp}} = \delta s'_{F^{\mathrm{x}}\mathrm{p}}$.

Определение параметров концентрической линзы

Угловая сферическая аберрация изображения, образованного концентрическими оптическими системами, определяется формулой (12) [5]. В соответствии с этой формулой в рассматриваемом случае концентрической линзы получаем $\delta\sigma' = -\frac{1}{6}\frac{m^3}{n^3}\psi_3$, где

$$\psi_3 = \left(n^3 - 1\right) \left(\frac{1}{r_1^3} - \frac{1}{r_2^3}\right) - \left(n - 1\right)^3 \left(\frac{1}{r_1} - \frac{1}{r_2}\right)^3. \tag{20}$$

Учитывая, что $r_2 = -\gamma r_1$, выражение (20) можно преобразовать:

$$\Psi_3 = 3n \frac{n-1}{\gamma^2 r_1^2} \left(\gamma^2 - \frac{n^2 - n + 1}{n} \gamma + 1 \right). \tag{21}$$

Из выражения (21) следует, что первичная сферическая аберрация изображения отсутствует, если выполняется условие

$$\gamma^2 - \frac{n^2 - n + 1}{n}\gamma + 1 = 0. {(22)}$$

Решение уравнения (22) можно представить в виде

$$\gamma = \frac{n^2 - n + 1 \pm \sqrt{n^4 - 2n^3 - n^2 - 2n + 1}}{2n}.$$

Фокусное расс	100,00									
Диафрагменно	1,400									
Угловое поле 2	120°00′									
Положение пре	Положение предмета относительно первой поверхности, мм									
Положение изо	ображения отно	сительно после	едней поверхно	сти, мм		-23,591				
Диаметр входн	юго зрачка, мм					71,4000				
Положение вхо	одного зрачка от	гносительно пе	рвой поверхнос	сти, мм		123,600				
Положение вы	ходного зрачка	относительно і	последней повеј	охности, мм		-123,600				
Основная длин	Основная длина волны, нм									
	Конструктивные параметры									
Номер	Радиусы, $D_{, \text{ MM}}$ Марки Показатели Световь				ые	Стрелки,				
поверхности	MM	стекол преломления диаметры,		, MM	MM					
				1,000000						
1	123,600	247,20	ИКС29	2,618000	229,80)	78,05			
2	-123,600			1,000000	218,33	3	-65,64			
Остаточные аберрации ($R' = -100 \text{мм}$)										
S_0	S_p	S'_p	S'_0	f_0' V_p		V_p S'				
	123,6	-123,6	-23,60	99,995	1,000	1,000 -23,59				
σ=0	m	$\Delta S'$	tgσ′	$\delta g'$	\overline{W}		η%			
	35,7 0,0273 0,382 0,0104 -0,95·10									
	25,2	-0,0038	0,261	$-0.98 \cdot 10^{-3}$	-0,0855	5	0			

Таблица 1. Концентрическая двояковыпуклая линза

Отсюда находим, что уравнение (22) имеет действительное решение при $n \ge 2,618$. При n = 2,618 коэффициент $\gamma = 1$. Подставив эти величины в выражения (14) и (15), при $f_0' = 1$ мм получаем $r_1 = -r_2 = 1,236$ мм; $s_{F'}' = -0,236$ мм. Заметим, кстати, что показатель преломления n = 2,618 имеет бескислородное инфракрасное стекло ИКС29 при длине волны излучения $\lambda = 3,906$ мкм, что вполне укладывается в окно прозрачности атмосферы. Параметры полученной системы и остаточные аберрации приведены в табл. 1.

Хроматическая аберрация изображения, образованного линзой, определяется формулой (19). Линза, определяемая параметрами, приведенными в табл. 1, образует мнимое изображение, и возможность ее применения неочевидна [6, 7]. Однако важно заметить, что параметры линзы определены из условия компенсации первичной сферической аберрации. И, тем не менее, при достаточно высокой светосиле линза образует изображение высокого качества.

Примеры расчета концентрических линзовых систем с компенсацией остаточной сферической аберрации и хроматизма положения

Для компенсации остаточной сферической аберрации и хроматической аберрации положения дополним концентрическую линзу концентрическим мениском, образовав следующую систему:

$$n_{1} = 1$$
 $r_{1} = \gamma_{1}r_{2}$
 $d_{1} = r_{1} - r_{2}$
 $n_{2} = n_{m}$
 $r_{2} = 1$
 $r_{3} = -\gamma_{2}r_{2}$
 $n_{4} = 1$

где $\gamma_1 > 1$; $\gamma_2 > 0$. Подставив параметры системы в формулу (10) и преобразовав ее, находим, что оптическая сила системы равна

$$\Phi_0 = \frac{1}{r_2} \left(\frac{n_m - 1}{n_m} \frac{1 - \gamma_1}{\gamma_1} + \frac{n_l - 1}{n_l} \frac{1 + \gamma_2}{\gamma_2} \right). \tag{23}$$

При $\varphi_0 = 1$

$$r_2 = \frac{n_m - 1}{n_m} \frac{1 - \gamma_1}{\gamma_1} + \frac{n_l - 1}{n_l} \frac{1 + \gamma_2}{\gamma_2} \,. \tag{24}$$

Продифференцировав выражение (23), получаем

$$d\phi_0 = \frac{1}{r_2} \left(\frac{1 - \gamma_1}{\gamma_1} \frac{dn_m}{n_m^2} + \frac{1 + \gamma_2}{\gamma_2} \frac{dn_l}{n_l^2} \right).$$

Полагая дифференциалы показателей преломления материала линз равными их средней дисперсии, преобразуем полученное выражение к виду $d\phi_{0xp} = \frac{1}{r_2} \left(\frac{1-\gamma_1}{\gamma_1} \frac{n_m-1}{n_m^2 \mu_m} + \frac{1+\gamma_2}{\gamma_2} \frac{n_l-1}{n_l^2 \mu_m} \right).$

При $d\varphi_{0xp} = 0$

$$\frac{1+\gamma_2}{\gamma_2} \frac{\gamma_1}{\gamma_1 - 1} = \frac{n_m - 1}{n_l - 1} \frac{n_l^2 \mu_l}{n_m^2 \mu_m} \,. \tag{25}$$

$$\frac{1}{\gamma_2} = \frac{n_m - 1}{n_l - 1} \frac{n_l^2 \mu_l}{n_m^2 \mu_m} \frac{\gamma_1 - 1}{\gamma_1} - 1.$$
 (26)

Угловую сферическую аберрацию изображения, образованного рассматриваемой системой, определим выражением (12). Учитывая, что $r_1 = \gamma_1 r_2$, а $r_3 = -\gamma_2 r_2$, путем преобразований получаем $\delta \sigma' = \frac{1}{4} n_1^3 m_1^3 \psi_3$, где

$$\psi_{3} = \frac{n_{m}^{3} - 1}{n_{m}^{3}} \frac{\gamma_{1}^{3} - 1}{\gamma_{1}^{3}} - \frac{n_{l}^{3} - 1}{n_{l}^{3}} \frac{1 + \gamma_{2}^{3}}{\gamma_{2}^{3}} - \left(\frac{n_{m} - 1}{n_{m}} \frac{\gamma_{1} - 1}{\gamma_{1}} - \frac{n_{l} - 1}{n_{l}} \frac{1 + \gamma_{2}}{\gamma_{2}}\right)^{3}.$$
(27)

В результате получили, что при $\psi_3 = 0$ уравнение (27) в сочетании с выражением (25) образует систему из двух нелинейных уравнений с двумя неизвестными: γ_1 и γ_2 .

Подставив выражение (26) в выражение (27), в результате преобразований при $\psi_3 = 0$ получаем уравнение

$$A\gamma_1^2 + B\gamma_1 + C = 0, \qquad (28)$$

где

$$A = \frac{n_m^3 - 1}{n_m^3} - \frac{n_l^3 - 1}{n_l^2} q \left(n_l^2 q^2 - 3n_l q + 3 \right) - \left(\frac{n_m - 1}{n_m} \right)^3 \left(1 - \eta \right)^3;$$

$$B = \frac{n_m^3 - 1}{n_m^3} + \frac{n_l^3 - 1}{n_l} q^2 \left(2n_l q - 3 \right) + 2 \left(\frac{n_m - 1}{n_m} \right)^3 \left(1 - \eta \right)^3; \quad C = \frac{n_m^3 - 1}{n_m^3} - \left(n_l^3 - 1 \right) q^3 - \left(\frac{n_m - 1}{n_m} \right)^3 \left(1 - \eta \right)^3;$$

$$\eta = \frac{n_l \mu_l}{n_m \mu_m}; \quad q = \frac{n_m - 1}{n_l - 1} \frac{\eta}{n_m}.$$

Вполне очевидно, что параметры выбранных материалов линз должны удовлетворять условиям $n_m > n_l$; $\mu_m < \mu_l$.

Пусть, например, в качестве материала для мениска выбрано стекло марки ТФ4 (n_e = 1,74632; μ_e = 27,94), а для двояковыпуклой линзы — стекло марки ЛК5 (n_e = 1,47990; μ_e = 65,44). Подставив по-казатели преломления и коэффициенты дисперсии стекол в выражения, определяющие коэффициенты, и выполнив соответствующие вычисления, находим, что A = -2,7206; B = 11,2188; C = -11,4882. Поделив коэффициенты B и C на коэффициент A, получаем уравнение (28) в виде

$$\gamma_1^2 - 4{,}1236\gamma_1 + 4{,}2227 = 0$$
.

В результате решения этого уравнения имеем: $\gamma_{11} = 2,23$; $\gamma_{12} = 1,8935$.

Пусть, например, $\gamma_1=2,23$. При этом из выражения (26) находим, что $\gamma_2=2,2584$. Подставив значения коэффициентов γ_1 и γ_2 в выражение (24), при соответствующих параметрах выбранных стекол получаем $r_2=0,2322$ мм. Тогда $r_1=\gamma_1r_2=0,5178$ мм; $r_3=-\gamma_2r_2=-0,5244$ мм.

В результате выполненного расчета получаем оптическую систему, параметры которой при $f_0'=100\,$ мм и остаточные аберрации образованного изображения приведены в табл. 2, а схема системы представлена на рис. 3.

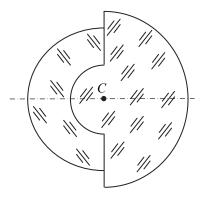


Рис. 3. Схема оптической системы, состоящей из двояковыпуклой линзы и концентрического мениска

Дополним концентрическую двояковыпуклую линзу, имеющую форму шара, двумя концентрическими менисками, образовав систему:

$$n_{1} = 1$$
 $r_{1} = \gamma_{1}r_{2}$
 $d_{1} = r_{1} - r_{2}$
 $n_{2} = n_{m}$
 $r_{2} = 1$
 $d_{2} = r_{2} - r_{3} = 2r_{2}$
 $n_{3} = n_{l}$
 $n_{4} = n_{m}$
 $n_{5} = 1$

Фокусное расстояние, мм										100,015		
Диафрагменное число										4,000		
Положение предмета относительно первой поверхности, мм										бесконечность		
Положение предмета относительно первои поверхности, мм Положение изображения относительно последней поверхности, мм										47,6233		
Основная длина волны, нм										546,070		
Диапазон ах									4	486,130–643,800		
	P		,		Конструкт	ивные параме	тры					
Номер		Pa	диусы,		Марки	Показат		Световы	e	-		
поверхнос	поверхности мм			D, mm	стекол	преломл	преломления		диаметры, мм		Стрелки, мм	
						1,0000	00					
1	1 51,780 28,56 TΦ4 1,746231 69,42				69,42		13,36					
2						8,54						
3						61,24	-9,87					
			Оста	аточные аб	беррации ($\Delta' = 0,048 \text{ MM}$; R' = -1	99,87 мм)				
S_0	S_{μ})	S'_p	S'_0	f_0'	V_p	S'	S' ₀ (1-0)	S'0((2-0)	S' ₀ (2-1)	
	51,	78	-52,44	47,575	100,02	1,000	47,623	0,044019	0,03	4062	-0,009957	
σ=0	$\sigma=0$ m		$\Delta S'$	tgo'	$\delta g'$	W	η%	$\delta g'(1-0)$	δg'((2-0)	$\delta g'(2-1)$	
12,		,5	0,101	0,126	0,0128	$-0.41 \cdot 10^{-3}$	0	0,00204	0,00	0804	0,00600	
10,8		,8	0,0330	0,109	0,00359	-0,234	0	0,00254	0,00612		0,00358	
	8,84		- 0,0133	0,0887	-0,0012	-0,263	0	0,00269	0,00	0432	0,00163	
6,25		25	- 0,0397	0,0626	-0,0025	-0,162	0	0,00233	0,00	0259	0,00025	

Таблица 2. Вариант линзовой концентрической системы

В этом случае коэффициенты $\gamma_i > 1$. Подставив параметры системы в формулу (10) и преобразовав ее, находим, что оптическая сила системы равна

$$\varphi_0 = \frac{1}{r_2} \left[2 \frac{n_l - 1}{n_l} + \frac{n_m - 1}{n_m} \left(\frac{1 - \gamma_1}{\gamma_1} + \frac{1 - \gamma_2}{\gamma_2} \right) \right]. \tag{29}$$

 Π ри $\phi_0 = 1$

$$r_2 = 2\frac{n_l - 1}{n_l} + \frac{n_m - 1}{n_m} \left(\frac{1 - \gamma_1}{\gamma_1} + \frac{1 - \gamma_2}{\gamma_2} \right). \tag{30}$$

Продифференцировав выражение (29) и заменив дифференциалы показателей преломления мате-

риала линз их средними дисперсиями, получаем $d\phi_{0\mathrm{xp}} = \frac{1}{r_2} \Bigg[2 \frac{n_l - 1}{n_l^2 \mu_l} + \Bigg(\frac{1 - \gamma_1}{\gamma_1} + \frac{1 - \gamma_2}{\gamma_2} \Bigg) \frac{n_m - 1}{n_m^2 \mu_m} \Bigg].$

При $d\phi_{0xp} = 0$

$$\frac{1}{\gamma_1} + \frac{1}{\gamma_2} = 2\left(1 - \frac{n_l - 1}{n_m - 1} \frac{n_m^2 \mu_m}{n_l^2 \mu_l}\right). \tag{31}$$

Для определения первичной угловой сферической аберрации изображения, образованного рассматриваемой системой, применим выражение (12). В результате преобразований получаем

$$\delta\sigma' = \frac{1}{6}n_1^3m_1^3\psi_3,$$

где

$$r_2^3 \psi_3 = 2 \left(\frac{n_m^3 - 1}{n_m^3} - \frac{n_l^3 - 1}{n_l^3} \right) - \frac{n_m^3 - 1}{n_m^3} \left(\frac{1}{\gamma_1} + \frac{1}{\gamma_2} \right)^3 + \frac{n_m^3 - 1}{n_m^3} \left(\frac{1}{\gamma_1} + \frac{1}{\gamma_2} \right) \frac{3}{\gamma_1 \gamma_2} + 8 \left(\frac{n_l - 1}{n_l} \right)^3 \left(1 - \frac{n_m \mu_m}{n_l \mu_l} \right). \tag{32}$$

Выполнив в полученном выражении (32) замену величин в соответствии с выражением (31), в результате последующих преобразований приводим его к следующему виду:

$$r_2^3 \psi_3 = 2 \left(N_m - N_l \right) - 8 N_m q^3 + 12 N_m q^2 \frac{1}{\gamma_1} - 6 N_m q \frac{1}{\gamma_1^2} + 8 \left(\frac{n_l - 1}{n_l} \right)^3 \left(1 - \eta \right)^3,$$

где
$$N_m = \frac{n_m^3-1}{n_m^3}\,; \ N_l = \frac{n_l^3-1}{n_l^3}\,; \ \eta = \frac{n_m \mu_m}{n_l \mu_l}\,; \ q = 1 - \frac{n_l-1}{n_m-1} \frac{n_m}{n_l} \eta \;.$$

При $\psi_3 = 0$ получаем квадратное уравнение:

$$A\gamma_3 = 0_1^2 + B\gamma_1 + C = 0, (33)$$

где
$$A = 2\left(N_{\scriptscriptstyle m} - N_{\scriptscriptstyle l}\right) - 8N_{\scriptscriptstyle m}q^3 + 8\left(\frac{n_{\scriptscriptstyle l} - 1}{n_{\scriptscriptstyle l}}\right)^3\left(1 - \eta\right)^3$$
; $B = 12N_{\scriptscriptstyle m}q^2$; $C = -6N_{\scriptscriptstyle m}q$.

Подставив параметры выбранного материала менисков и средней линзы в выражения коэффициентов и решив уравнение (33), находим значение коэффициента γ_1 . Выражение (31) позволяет найти значение коэффициента γ_2 . Применив выражение (30), находим величину r_2 . В результате получаем значения конструктивных параметров рассчитываемой системы. Вполне очевидно, что в качестве материала менисков следует выбирать флинтовое стекло, а средней линзы — кроновое. Однако далеко не каждая пара таких стекол определяет получение действительного решения уравнения (33). В связи с этим представляет интерес найти более наглядное условие пригодности выбранной пары стекол для решения поставленной задачи [8].

Представим решение уравнения (33) в виде $\gamma_1 = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$. Отсюда следует, что уравнение (33) имеет действительные решения при условии $B^2 - 4AC > 0$. При $N_m q > 0$ это условие можно преобразовать к виду $\frac{N_m - N_l}{N_m} + 4 \left(\frac{n_l - 1}{n_l}\right)^3 \left(1 - \eta\right)^3 \ge q^3$. Выражение $4 \left(\frac{n_l - 1}{n_l}\right)^3 \left(1 - \eta\right)^3 \ge 0$ и, как показывает опыт расчетов, определяет достаточно малую величину. Исходя из этого, приведенное условие существования действительных решений уравнения (33) можно усилить: $q \le \sqrt[3]{\frac{N_m - N_l}{N_m}}$. Заменив величину q определяющим ее выражением, преобразуем это условие:

$$Q \leq \frac{\mu_m}{\mu_l},$$
где $Q = \frac{n_m - 1}{n_l - 1} \frac{n_l^2}{n_m^2} \left(1 - \sqrt[3]{\frac{N_m - N_l}{N_m}} \right).$

Пусть, например, в качестве материала линз выбраны стекла марок ТФ4 $(n_e=1,74623,\,\mu_e=27,94)$ и К8 $(n_e=1,51829,\,\mu_e=63,87)$. Для этой пары стекол величина $Q=0,5507>\frac{\mu_m}{\mu_l}=0,4375$, т.е. эта пара стекол не годится для решения рассматриваемой задачи. Заменим стекло марки ТФ4 стеклом марки ТБФ3 $(n_e=1,76021,\,\mu_e=40,87)$, т.е. стеклом с примерно равным показателем преломления, но с существенно большей величиной коэффициента дисперсии. В этом случае величина $Q=0,5452>\frac{\mu_m}{\mu_l}=0,6399$, т.е. удовлетворяет условию решаемой задачи. При выбранном материале линз коэффициенты A=-0,2521 ; B=1,6763 ; C=-2,0265 . При этом получаем уравнение

$$\gamma_1^2 - 6,6493\gamma_1 + 8,0385 = 0. (35)$$

В результате решения этого уравнения имеем: $\gamma_{11} = 1,58833$; $\gamma_{12} = 5,06096$.

Пусть, например, $\gamma_1=1,58833$. При этом из выражения (26) находим, что $\gamma_2=5,06096$. Подставив значения коэффициентов γ_1 и γ_2 в выражение (24), при соответствующих параметрах выбранных стекол получаем $r_2=0,1762$ мм. Тогда $r_1=\gamma_1r_2=0,27987$ мм; $r_4=-\gamma_2r_2=-0,89174$ мм.

В результате выполненного расчета получаем оптическую систему, конструктивные параметры которой при $f_0'=100\,$ мм и остаточные аберрации образованного изображения приведены в табл. 3, а схема системы представлена на рис. 4.

Заметим, что второе решение уравнения (35) определяет ту же систему, но повернутую на 180°.

Увеличим коррекционные возможности рассматриваемой системы, дополнив ее еще одной парой концентрических симметрично расположенных менисков. В результате этого получаем систему, состоящую из базовой линзы в виде шара и окружающих ее двух концентрических менисков:

$$n_1 = 1$$
 $r_1 = \gamma_1 r_3$
 $d_1 = r_1 - r_2$
 $n_2 = n_{m1}$
 $r_2 = \gamma_2 r_3$
 $d_2 = r_2 - r_3$
 $n_3 = n_{m2}$
 $r_3 =$
 $d_3 = r_3 - r_4 = 2r_3$
 $n_4 = n_1$
 $r_4 = -r_3$
 $d_4 = r_4 - r_5 = d_2$
 $n_5 = n_{m2}$
 $r_5 = -r_2$
 $d_5 = r_5 - r_6 = d_1$
 $n_6 = n_{m1}$
 $r_6 = -r_1$

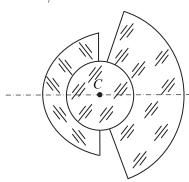


Рис. 4. Схема оптической системы объектива, состоящей из двояковыпуклой линзы (шара) и двух концентрических менисков

Фокусное расстояние, мм										100,000		
Диафрагмен		5,000										
Положение предмета относительно первой поверхности, мм										бесконечность		
Положение изображения относительно последней поверхности, мм										10,8868		
Основная дл		546,070										
	Диапазон ахроматизации, нм											
,	<u> </u>	1		Конструкти	вные параме	етры			,)-643,800		
Номер	-	Радиусы,		Марки			Светов	ые				
поверхнос	l l	MM	D, mm	стекол	преломл		диаметры, мм		Стрелки, мм			
					1,0000			,				
1		27,987	10,37	ТБФ3		1,760217		41,63		9,28		
2		17,620		К8		1,518296		3,58		7,31		
3		-17,620	35,24 71,55	ТБФ3	1,760217		24,37			-4,89		
4		-89,174	, 1,00	1210	1,0000		90,87			-12,44		
Остаточные аберрации ($\Delta' = 0.062$ мм; $R' = -100.00$ мм)										12,		
		Остат	очные ао	еррации (д	$\Delta = 0,002 \text{ MM}$, K = -	100,00 MM)					
S_0	S_p	S'_p	S'_0	f_0'	V_p	S'	$S'_0(1-0)$	$S'_0(2-$	0)	$S'_0(2-1)$		
	27,99	-89,17	10,825	100,00	1,000	10,887	0,045244	0,0426	577	-0,002567		
σ=0			tgσ′	$\delta g'$	W	η%	$\delta g'(1-0)$	$\delta g'(2-$	0)	$\delta g'(2-1)$		
	10,0	ΔS' 0,131	0,100	0,0131	$0,334 \cdot 10^{-7}$	0	0,00362	0,005		0,00223		
	8,66		0,0868	0,00368	-0,192	0	0,00328	0,00476		0,00148		
	7,07		0,0709	-0,0012	-0,215	0	0,00283	0,003		0,000786		
0,0170 0,0707 -0,0012 -0,213							0,00203	0,005	02	0,000700		
	5,00	0,0508	0,0501	-0,0025	-0,133	0	0,00212	0,002	35	0,000226		

Таблица 3. Вариант линзовой концентрической системы

Практический смысл имеют значения коэффициентов $\gamma_1 > \gamma_2$; $\gamma_2 > 1$. Оптическая сила рассматриваемой системы в соответствии с формулой (10) определяется выражением

$$\varphi_0 = \frac{2}{r_3} \left[\frac{n_{m1} - 1}{n_{m1}} \frac{1}{\gamma_1} - \left(\frac{n_{m1} - 1}{n_{m1}} - \frac{n_{m2} - 1}{n_{m2}} \right) \frac{1}{\gamma_2} + \frac{n_l - 1}{n_l} - \frac{n_{m2} - 1}{n_{m2}} \right]. \tag{36}$$

При $\varphi_0 = 1$

$$\frac{1}{2}r_3 = \frac{n_{m1} - 1}{n_{m1}} \frac{1}{\gamma_1} - \left(\frac{n_{m1} - 1}{n_{m1}} - \frac{n_{m2} - 1}{n_{m2}}\right) \frac{1}{\gamma_2} - \left(\frac{n_{m2} - 1}{n_{m2}} - \frac{n_l - 1}{n_l}\right). \tag{37}$$

Продифференцировав выражение (36) и заменив дифференциалы показателей преломления материала линз их средними дисперсиями, получаем

$$d\phi_{0xp} = \frac{2}{r_3} \left[\frac{n_{m1} - 1}{n_{m1}^2 \mu_{m1}} \frac{1}{\gamma_1} - \left(\frac{n_{m1} - 1}{n_{m1}^2 \mu_{m1}} - \frac{n_{m2} - 1}{n_{m2}^2 \mu_{m2}} \right) \frac{1}{\gamma_2} - \left(\frac{n_{m2} - 1}{n_{m2}^2 \mu_{m2}} - \frac{n_l - 1}{n_l^2 \mu_l} \right) \right].$$

При $d\varphi_{\text{ovn}} = 0$

$$\frac{1}{\gamma_1} = \left(1 - \alpha\right) \frac{1}{\gamma_2} + \alpha \left(1 - \beta\right),\tag{38}$$

где
$$\alpha = \frac{n_{m2}-1}{n_{m1}-1} \frac{n_{m1}^2 \mu_{m1}}{n_{m2}^2 \mu_{m2}} \, ; \; \beta = \frac{n_l-1}{n_{m2}-1} \frac{n_{m2}^2 \mu_{m2}}{n_l^2 \mu_l} \; .$$

Для определения первичной угловой сферической аберрации изображения, образованного рассматриваемой системой, применим выражение (12). В результате преобразований получаем

$$\delta\sigma' = -\frac{n_1^3 m_1^3}{3r_3^3} \psi_3 \,, \tag{39}$$

где
$$\psi_{3} = \frac{N_{m1}}{\gamma_{1}^{3}} + \frac{N_{m2} - N_{m1}}{\gamma_{2}^{3}} + N_{l} - N_{m2} - 4\left(\frac{n_{m1} - 1}{n_{m1}}\right)^{3} \left[\frac{1}{\gamma_{1}} - \frac{1 - \eta_{m}}{\gamma_{2}} - \eta_{m}\left(1 - \eta_{l}\right)\right]; \quad N_{m1} = \frac{n_{m1}^{3} - 1}{n_{m1}^{3}}; \quad N_{m2} = \frac{n_{m2}^{3} - 1}{n_{m2}^{3}};$$

$$N_{l} = \frac{n_{l}^{3} - 1}{n_{l}^{3}}; \ \eta_{m} = \frac{n_{m2} - 1}{n_{m1} - 1} \frac{n_{m1}}{n_{m2}}; \ \eta_{l} = \frac{n_{l} - 1}{n_{m2} - 1} \frac{n_{m2}}{n_{l}}.$$

При $\psi_3 = 0$

$$\frac{1}{\gamma_1^3} + \frac{N_{m2} - N_{m1}}{N_{m1}} \frac{1}{\gamma_2^3} + \frac{N_l - N_{m2}}{N_{m1}} - \frac{4}{N_{m1}} \left(\frac{n_{m1} - 1}{n_{m1}} \right)^3 \left[\frac{1}{\gamma_1} - \frac{1 - \eta_m}{\gamma_2} - \eta_m \left(1 - \eta_l \right) \right]^3. \tag{40}$$

Итак, при выбранных материалах линз уравнения (38) и (40) образуют систему из двух уравнений с двумя неизвестными величинами γ_1 и γ_2 . В основу выбора материала линз положим следующие соображения.

Известно, что хроматическая аберрация положения изображения, образованного двояковыпуклой линзой, определяется отрицательной величиной. В изображении, образованном предыдущей системой, как следует из таблицы остаточных аберраций (табл. 3), хроматическая аберрация определяется положительной величиной, т.е. перекомпенсирована. Следовательно, можно попытаться компенсировать хроматическую аберрацию путем выбора материала менисков с более высоким коэффициентом дисперсии. Отсюда следует, что в рассматриваемом случае компенсация хроматической аберрации принципиально возможна, если в качестве материала наружных менисков выбрать стекло кроновых марок.

Выберем для примера в качестве материала двояковыпуклой линзы (шара) стекло марки К8, для следующей пары менисков – стекло марки ТФ4, для наружных менисков – стекло марки ТК14. Применив формулы (38)–(39), при выбранных материалах линз находим: $\gamma_2 = 1,46578$, $\gamma_1 = 2,02540$. Подставив значения соответствующих величин в формулу (37), получаем $r_3 = 0,2675$. Тогда $r_2 = -r_5 = \gamma_2 r_3 = 0,39210$ мм; $r_1 = -r_6 = \gamma_1 r_3 = 0,54179$ мм. В результате получаем систему, параметры которой и остаточные аберрации образованного изображения приведены в табл. 4, а схема системы представлена на рис. 5.

В изображении, образованном полученной системой, можно считать, что хроматическая аберрация положения практически отсутствует, при этом хроматическая аберрация определяется вторичным спектром, примерно равным 0.04 мм.

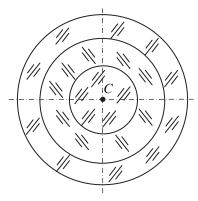


Рис. 5. Схема оптической системы объектива типа «Сферогон», состоящей из двояковыпуклой линзы (шара) и двух пар концентрических менисков

Фокусное расстояние, мм 100,												
Диафра		4,0000										
Угловое поле 2ω										60°00′		
Положение предмета относительно первой поверхности, мм										конечность		
Положение изображения относительно последней поверхности, мм										45,8501		
Диаметр входного зрачка, мм										25,0000		
Положе	ение вхо,	дного зрачі	ка относит	гельно пеј	рвой поверхі	ности, мм	[54,1800		
Положе	ение вых	одного зра	чка относ	ительно п	оследней по	верхност	и, мм		_	-54,1800		
Основн	ая длина	а волны, нм	1							546,070		
Диапаз	он ахром	иатизации,	HM						480,0	000–643,800		
				Конст	руктивные п	араметры	[
Ном	иер	Радиусы	Ι, Γ), _{MM}	Марки	Показ	атели	Свето	вые диа-	Стрелки, мм		
поверх	ности	мм стекол преломления метры						оы, мм	erpenni, min			
						1,000						
1		54,180		4,97	TK14	1,615		71,87		13,63		
2		39,210		2,46	ТФ4	1,746			4,77	11,15		
3		26,750		3,50	К8	1,518		40,15		9,07		
4		-26,750		2,46	ТФ4	1,746		36,09		-7,00		
5		-39,210		4,97	TK14	1,615		48,37		-8,35		
6	6 -54,180					1,000			2,68	-9,98		
	Остаточные аберрации $(\Delta' = 0.031 \text{ мм}; R' = -100.00 \text{ мм})$											
S_0	S_p	S'_p	S'_0	f_0'	V_p	S'	S' ₀ (1		$S'_0(2-0)$	S' ₀ (2-1)		
	54,18	-54,18	45,819	99,999	1,000	45,850	0,040	846	0,038800	-0,002046		
σ=0	m	$\Delta S'$	tgσ′	$\delta g'$	W	η%	δg'(1	-0)	$\delta g'(2-0)$	$\delta g'(2-1)$		
	12,5	0,0637	0,126	0,00802	2 -0,0032	0	0,00	161	0,00910	0,00749		
	10,8	0,0209	0,109	0,00227		0	0,002	0,00217		0,00476		
	8,84	-0,0085	0,0887	-0,76·10		0	0,002		0,00490	0,00250		
	6,25	-0,0255	0,0626	-0,0016	-0,104	0	0,002	213	0,00294	0,00081		

Таблица 4. Линзовая концентрическая система объектива типа «Сферогон»

Заключение

Основные результаты работы определяют теоретическую базу инженерного метода параметрического синтеза линзовых концентрических оптических систем, построенного на основе полученных математических соотношений и изложенных соображений по выбору материала линз. Такой метод позволяет на основе анализа условий коррекции хроматической аберрации положения получить конкретные линзовые концентрические оптические системы для нескольких конструктивных решений. Представлены конструктивные параметры и таблицы остаточных аберраций рассчитанных оптических систем, которые подтверждают возможность достижения высокой степени коррекции угловой сферической аберрации и хроматизма положения.

Показана возможность компенсации хроматической аберрации путем выбора материала менисков с более высоким коэффициентом дисперсии. Отсюда следует, что в рассматриваемом случае компенсация хроматической аберрации принципиально возможна, если в качестве материала наружных менисков выбрать стекло кроновых марок.

Литература

- 1. Zverev V.A., Kovaleva A.S., Timoshchuk I.N. Analysis and parametric synthesis of the optical systems of a mirror–lens concentric objective // Journal of Optical Technology. 2012. V. 79. N 1. P. 1–5. doi: 10.1364/JOT.79.000001
- Попов Г.М. Концентрические оптические системы и их применение в оптическом приборостроении. М.: Наука, 1969. 135 с.
- 3. Mahajan V.N. Aberration Theory Made Simple. 2nd ed. SPIE Press, 2011. 208 p.
- 4. Ezhova K.V., Zverev V.A., Van Luen N. Aberrational properties of a thin component as the basic element in a variable magnification optical system // Journal of Optical Technology. 2013. V. 80. N 12. P. 738–740. doi: 10.1364/JOT.80.000738
- 5. Ковалева А.С. Метод расчета концентрических зеркальных, зеркально-линзовых и линзовых систем // Изв. вузов. Приборостроение. 2013. Т. 56. № 11. С. 55–61.
- 6. Русинов М.М. Техническая оптика. 2-е. изд. СПб.: Книжный дом «Либриком», 2011. 487 с.
- 7. Грамматин А.П., Романова Г.Э., Балаценко О.Н. Расчет и автоматизация проектирования оптических систем. СПб.: НИУ ИТМО, 2013. 128 с.
- 8. Zverev V.A., Timoshchuk I.N. Aberrational properties of a thin mirror–lens component in a convergent pencil of rays // Journal of Optical Technology. 2015. V. 82. N 4. P. 227–230. doi: 10.1364/JOT.82.000227

Ежова Ксения Викторовна Зверев Виктор Алексеевич Точилина Татьяна Вячеславовна	 кандидат технических наук, доцент, доцент, Университет ИТМ Санкт-Петербург, 197101, Российская Федераци ezhovakv@aco.ifmo.ru доктор технических наук, профессор, post_vaz@rambler.ru кандидат технических наук, доцент, доцент, Университет ИТМ
	Санкт-Петербург, 197101, Российская Федераці tvtochilina@mail.ru
Ksenia V. Ezhova	 PhD, Associate professor, Associate professor, ITMO University 197101, Saint Petersburg, Russian Federation, ezhovakv@aco.ifmo.ru
Victor A. Zverev	 D.Sc., Professor, post_vaz@rambler.ru
Tatiana V. Tochilina	 PhD, Associate professor, Associate professor, ITMO University 197101, Saint Petersburg, Russian Federation, tvtochilina@mail.ru