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Abstract

Subject of Research. The paper presents the study of algorithms for key point detection and description, widely used
in computer vision. Typically, the corner detector acts as a key point detector, including neural key point detectors. For
some types of images obtained in medicine, the application of such detectors is problematic due to the small number
of detected key points. The paper considers a problem of a neural network key point detector training on unlabeled
images. Method. We proposed the definition of key points not depending on specific visual features. A method was
considered for training of a neural network model meant for detecting and describing key points on unlabeled data. The
application of homographic image transformation was basic to the method. The neural network model was trained to
detect the same key points on pairs of noisy images related to a homographic transformation. Only positive examples
were used for detector training, just points correctly matched with features produced by the neural network model for
key point description. Main Results. The unsupervised learning algorithm is used to train the neural network model.
For the ease of comparison, the proposed model has a similar architecture and the same number of parameters as the
supervised model. Model evaluation is performed on the three different datasets: natural images, synthetic images, and
retinal photographs. The proposed model shows similar results to the supervised model on the natural images and better
results on retinal photographs. Improvement of results is demonstrated after additional training of the proposed model
on images from the target domain. This is an advantage over a model trained on a labeled dataset. For comparison, the
harmonic average of such metrics is used as: the accuracy and the depth of matching by descriptors, reproducibility
of key points and image coverage. Practical Relevance. The proposed algorithm makes it possible to train the neural
network key point detector together with the feature extraction model on images from the target domain without costly
dataset labeling and reduce labor costs for the development of the system that uses the detector.
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AHHOTaNMA

IIpeamer ucciaeqoBaHusi. ATTOPUTMBI BBICICHHUS U OMHMCAHUS KJIIOYEBHIX TOUYEK MIHMPOKO NMPUMEHSIOTCS B
KOMITBIOTepHOM 3peHHr. OOBIYHO B Ka4eCTBE ACTEKTOpa KITIOUEBBIX TOUEK BBICTYIIAET AETEKTOP YIIIOB, YTO OTHOCUTCS
B TOM YHCJIE U K HEHPOCETEeBBIM AeTeKTopaM. J{Is HeKOTOPHIX THIIOB H300paKEHU, ITOJydaeMBIX B TOM 4HCIE B
MeJIUIMHE, TAKHEe JETEKTOPHI He MOJXOAT U3-3a MaJOro KOJMYeCTBa TaKUX KIIIOUEBBIX To4YeK. B paboTe craButrcs
3aja4a 00yueHHs1 HEHPOCETEeBOro IeTEKTOpa KIIOUEBBIX TOYEK Ha Hepa3MeuyeHHbIX JaHHbIX. Metoa. [Ipeanoxeno
OIPECIEHNE KITFOYEBBIX TOYCK, HE 3aBUCANIICE OT KOHKPETHLIX BU3YAJIbHBIX IIPU3HAKOB. PaCCMOTpeH crioco6 OGy‘{GHHﬂ
HelfpoceTeBOi MOAENN JEeTEKTHPOBAHMS U OMUCAHMS KIIOUEBBIX TOUEK HAa HEpa3MEUeHHBIX JaHHBIX. B ocHOBe
METO/Ia JIKUT UCIIONB30BaHHE roMorpadudeckoii TpaHcopmanuu nzodpaxenuid. HelipocereBas mozaens oOydaercs
JIETeKTUPOBATh OJHU U TE XK€ KIIFOYEBbIC TOUKH Ha Mapax 3alIyMISHHBIX H300paKeHHH, CBSI3aHHBIX ToMOrpaduaecKon
TpaHchopmanueit. J{ias oOydeHus: 1eTeKTopa HCIONb3YIOTCS TONBKO MTO3UTUBHEIE MPUMEPHI, @ UIMEHHO TOJBKO
TOYKH, NPaBUIBHO COMOCTABIsIEMbIE 110 PU3HAKaM, BBIIaBaeMbIM HEHPOCETEBOH MOJENBIO OMMCAHUS KIIOYEBBIX
Touek. OCHOBHBIe pe3yabTaThl. [IpeacTaBieHHbIN adropuT™ o0yueHHs 6e3 yuuTeNst UCIOIb30BaH Il 00yUeHHUs
HelipoceTeBoit Mozenu. J{ist yno0cTBa CpaBHEHUS IPEUIOKEHHAsT MOJIENb HMEET CXOXKYIO0 apXUTEKTypy U TaKoe JKe
YHCIIO TTapaMeTPOB, KaK M MOZIEINb, 00yueHHas ¢ yuuteneM. [IpoBepka Mojienieli BBITIOJIHEHA Ha TPEX PasIMYHbIX Habopax
JIAHHBIX: C €CTECTBEHHBIMH M C CHHTETHYECKMMH M300paKeHUsAMH, U Ha GoTorpadusx cerdyarku riasa. [IpeanoxenHas
MOJIEINb TTOKa3bIBAET CXOKUE PE3yNIbTaThl C 00YUCHHOH € YUUTENIeM Ha eCTECTBEHHBIX N300paKEHHUAX U JydIIne — Ha
(oTorpadusax ceryarku rmaza. Takike TeMOHCTPUPYETCS YITydIIEHHE PE3yJIbTaTOB 3a CUEeT JOMOIHUTETEHOTO 00y IeHNUS
paccMOTPEHHON MOJIEN Ha H300paKEHUSIX U3 IIEJICBOTO JIOMEHA, UTO SBIISIETCS] IPEUMYIIIECTBOM OTHOCHTEIEHO MOJIEIH,
o0ydaeMoii Ha pa3MEUeHHBIX JAaHHBIX. {711 CpaBHEHHS HCIIOIb30BATIOCH FapMOHHUYECKOE CPEAHEe OT CIIeTYIOMINX
MoKa3aresel: TOYHOCTh ¥ MOJHOTA COMOCTABICHHUS 110 JeCKPHUITOPaM, BOCIIPON3BOJUMOCTh KIIIOUEBBIX TOYEK U
MOKPBITHE N300pa)KeHUs KIIOUeBBIME ToukaMu. [IpakTHYecKkasi 3HAYMMOCTh. AJITOPUTM T03BOJISIET 00ydaTh
HEeHpOoCeTeBOM JeTEKTOp KII0YEBBIX TOYEK BMECTE C MOJENbBIO OMHCAHUIO KIIOYEBBIX TOYEK HA M300paKEHUSIX 3
IIEJIEBOTO JIOMEHA, TIPU 3TOM He TpeOys TPy/03aTpar Ha pa3MeTKy 00y4aroIero Habopa JaHHbIX, YTO MO3BONSET CHU3HUTh

TPyA03aTpaThl Ha Pa3pabOTKy CHCTEMBI, HCIONB3YIOIIEH 1eTeKTOP.

KuoueBble ciioBa

oOydeHne 0e3 yuuTens, Iiyookoe o0ydeHue, IeTeKTUPOBAHUE KITFOUEBBIX TOUCK, JTOKAIbHBIC TPU3HAKU

Cceplaka g nuutupoBanus: bemikos A.B., [Toramos A.C., Slmenko A.B. Xopomas Touka: oOyueHne 0e3 yduTens
00HapyKEHUIO U OIMCAHHIO 110 KIIFOYEBbIM TouKaM // Hay4HO-TeXHHYECKHI BECTHUK MH(OPMAIMOHHBIX TEXHOJIOTHIA,
mexanukd ¥ ontuku. 2021. T. 21, Ne 1. C. 92—-101 (na anr. s13.). doi: 10.17586/2226-1494-2021-21-1-92-101

Introduction

Local image features (key point detection and descriptor
extraction) form the base of many computer vision
applications, most of notably simultaneous localization
and mapping (SLAM) and augmented reality. Traditionally,
handcrafted local features were used such as Harris corner
detector [1], SURF (Speeded-Up Robust Features) [2] and
many others, but machine learning methods have shown
their usefulness for the task quite early. For example, FAST
(Features from Accelerated Segment Test) [3] introduced
in 2006 uses decision trees for corner detection. With the
improvement of hardware and deep learning theory, it
became also possible to learn descriptor extraction and
matching, for example, as in SuperGlue [4]. However,
typically, supervised learning is used mostly that limits the
applicability of the methods to novel domains.

One of machine learning definitions is the ability of a
program to improve performance with more information
[5]. Deployed feature extraction and image matching
methods are to be applied to unlabeled data, and the
improvement of their performance naturally supposes
unsupervised learning. Although supervised learning
demonstrates frequently better performance, unsupervised
training of convolutional neural networks for feature
generation [6, 7] provides state-of-the-art results. This fact
cannot be achieved for the whole key point detection and
description of extraction pipeline.

The SuperPoint supervised method [6] features a very
simple loss function for descriptors, which minimizes
the difference of descriptors of regions that corresponds
geometrically, and maximizes the difference otherwise.

Since the heatmap for key points is a kind of descriptor
too, it hints at the possibility of building good key point
detectors in an unsupervised manner by a simple loss
function. Corners are the popular type of key points
among handcrafted or supervised detectors. Among
aforementioned methods, FAST, Harris and SuperPoint
detect corners (and also line ends), SURF uses blob
detection.

From a practical point of view, an ideal key point
detector is the one that optimizes performance of a
downstream task (image matching) or even target
application (e.g. SLAM), but this measure might be
difficult to compute and/or optimize. Instead, we assume
that good key points should be distributed more or less
evenly throughout the image and have good repeatability
between various viewpoints. Good key points should be
recognizable and distinguishable with descriptors and be
not loo close.

A new unsupervised algorithm for simultaneous training
of the key point detector and the descriptor generator is
proposed. A single two-headed neural network built up on
SuperPoint architecture is used for both tasks. The proposed
model can be trained directly on a target domain without
the need for performing costly domain adaptation, and it is
applicable in situations in which domain adaptation does
not work because of large differences between target and
source domains. The proposed model achieves competitive
performance with SuperPoint when trained on the same
dataset, without supervised pre-training, and demonstrates
better performance on images with low number of corner-
like features. The resulting model is referred hereinafter as
GoodPoint.
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Related work

SuperPoint [6] introduced a fast convolutional neural
network for key point detection and descriptor extraction.
Training is split into two stages:

1) supervised training of a detector on synthetic dataset;
2) training of a detector on self-labelled natural images
together with unsupervised training of a descriptor.

Our work follows SuperPoint architecture, but
simplifies training procedure, removing supervised pre-
training and self-labelling from the pipeline. Instead, both
heads of the network are trained on natural images from
the beginning.

GLAMpoint authors [7] train a key point detector on
pairs of images related by a homographic transformation.
The method uses non-maximum suppression on heatmaps
both on images to extract candidate key points and then
uses matching with SURF descriptors [2] to mine positive/
negative examples.

Another related research direction is an object key point
detection. Authors of [8] propose unsupervised key point-
detector learning with conditional image generation. Given
a pair of images (x, x") with the same objects, but with a
different viewpoint and/or object pose, a training procedure
minimizes weighted difference between features extracted
from image x' and the reconstruction X' = W(x, K(x")) of
x'. The reconstruction is produced by a neural network ‘P,
given image x and keypoints from x'. The loss function is
defined as

L= Y00, = T, ()5

Here, I'; denotes output of a layer / of a pretrained
neural network I, a; — scalar weight for the loss computed
from the output of layer / of network I

Here, K is a keypoint detector neural network that learns
to output k& heatmaps

K(x') € RFIK,

where H, W are the height and the width of images x and x'.
Each heatmap corresponds to the location of one keypoint
and is normalized with softmax function to be a probability
distribution.

Authors of [9] reuse the formulation from work [8]
restricting to static backgrounds. The main difference
from [8] is the introduction of feature transport: features
extracted from both image used to generate x":

O(x, x') = (1 = HK(x))(1 - H(K(x)))P(x) + HK(x)D(x").

Here, K is a key point detector that outputs £ heatmaps.
H is a heatmap image containing isotropic Gaussians
around each of the key points that are specified by K(x)
or K(x"). ® is a feature extraction network. @ takes
background features (that is, features from locations where
there are no key points) from both images plus features
from x' near target keypoints K(x'). The loss is a squared
reconstruction error:

I — RefineNe(@(x, X)),
where RefineNet is a convolutional generative model.

LF-Net [10] advances the results of SuperPoint to the
new state-of-the-art on many datasets, though it requires

ground truth depth and camera pose information. LF-Net
projects score map from source image /; to target image /,
applies non-maximum suppression to sample key points
and then generates new target score map with Gaussian
kernel. The average difference

L(S;, $) = 1S; = g(w(S))2

of score maps is minimized.

Here, w is a projection function, S;, S; are score maps
extracted from images x;, x;, and g is a Gaussian kernel
application. Descriptors are extracted from key point
locations, the difference between a correspondent and
non-occluded descriptors is minimized. Also, there is an
additional loss for key point scales and orientations.

Architecture overview

The proposed GoodPoint architecture (Fig. 1) is based
on SuperPoint architecture and consists of a common
VGG backbone followed by two heads: descriptor and
detector. The VGG backbone and descriptor heads are left
unchanged, except for the activation function. The training
procedure, detector head and loss function are different.
Activation function used for all layers is leaky ReLU [11].
So, the total number of trainable parameters is the same.
The detector is implemented similar to SuperPoint but
without dustbin channel. So, the detector head outputs
tensor P € RH/8W8<64 instead of P e RI/8*W/8<65 Thjs fact
does not affect performance and simplifies implementation
since all channels are now being treated equally. Softmax
is applied along the last axis to ensure that points lie
not too close that makes it possible to learn only from
positive examples. After the softmax, normalized tensors
are reshaped from RS W/8x64 to RAW¥1 to form a
confidence map. The descriptor head outputs semi-dense
tensor D € RA/8W8<256 \which is interpolated in keypoint
locations.

Training

Training is based on homographic warping of images
and noise augmentation. The loss is computed on a pair of
images: original / and warped with random homography
image /;,. Single homography # is used for all images in a
mini-batch. Both of the images may be warped, in which
case they still are related by single homography H, so
equations do not change. The final loss L is a weighted sum
of two losses, descriptor loss L, and detector loss

L(P, Ph’ D, Dh’H):)\‘lLdJr )\,zL Y

where A, A, are weights. P, P, are heatmaps for images /
and [;,. D, Dy, are descriptors for images / and 7.

After homographic warp, random noise filters are
applied independently to images /, and /,,. Details of noise
augmentation are provided in «noise augmentation»
section.

Training of key point detection is inspired by expectation-
maximization technique. The network learns to output key
points that are easy for it to reproduce. It is trained with
target key points computed with the following procedure
(Fig. 2): points K found on image / are projected to 7, to
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keypoints extraction
and descriptor interpolation

descriptor loss

. | @
.‘. alibl)?

Fig. 1. Unsupervised training overview. First, key points and descriptors are extracted from the original and warped (WARP) images
with a two-headed neural network. Descriptors are interpolated in location of key points from semi-dense output.
Key points are matched with the descriptors and correctly matched points are used as positive examples for detector training.
All interpolated descriptors are used to calculate descriptor loss

Fig. 2. Key point target estimation

form K,,,,; (1), projected points K,,,; are matched with
K;, by 2D coordinates and by descriptors with the nearest
neighbor matcher to form two sets of matches X,,,,; — K,
(2), pairs of points that are matched by coordinates and
by descriptors (namely, pairs are presented in both sets
of matches) as the nearest neighbors are used to compute
targets. Targets K, are projected back to image I (3).

A more detailed description is provided in the next
section.

Key points loss

The loss function for key point detector is a sum of
negative log-likelihoods of estimated target key point
positions for both images plus heatmaps difference:

Lp(Ps Py, K, K, H) = Lkeypoinrs + Lheatmapw

1
Lkeypoints = ;(IOgP[ ’] + IOgPh[Kh,])s (1)

1 height,width

(bIr(PH) — blr(P,I))(i ).

Lheatmaps = )"h
mask (ij)Emask

P[*] denotes selection of points * from 2D heatmap
P. %, is a weight for heatmap difference. b/r(PH) denotes
homographic projection of heatmap P, similarly, it is
done for image /. Note that bilinear interpolation of Pj, is
necessary, otherwise the loss will be high even if heatmaps
are similar due to b/r(PH) being much smoother than P
or P,

The sum iterates over points covered by mask for
image /,. The mask for image /;, is 2D tensor of the same
shape as the image, such that for all points p = (x, y) in
the mask: mask[p] = 1 if projection PH,,, € I;, and 0,
otherwise. N, 1S the number of nonzero elements of the
mask. Tensors of estimated good keypoints positions K" and
K;' are computed using the following steps with the given
two heatmaps P and P,

Key point arrays K and K, are extracted from P and P,
with maxpooling of different sizes:

K = maxpoolsy,3»(P),
K, = maxpoolg.16(P},)-

One key point selection for each region of size equal to
32 x 32 or 16 x 16 follows from the assumption that key
points should be distributed more or less evenly throughout
an image, but not too close. Max pool function performs
max pooling and returns coordinates of key points (x;, y;)
as an array. That is, K and K, have m x 2 and n x 2 shapes.
If the projection of points K to image plane K, is
K,,; = KH, the keypoints projected beyond the boundaries
of the image are discarded. D,,,;, D), are descriptors of
points K,,.,; and K}, that is, D,,,,,; are descriptors extracted
from image / of keypoints that stay in bounds when
projected on image /),
The next step is to match points in /;, with descriptors
and with coordinates:
dist id.

geon> xgeom = matc}/lg@()m Kp

Kh)7

roj>

idxdesc = matChdesc(Dproja Dh)'
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Here, the function matchy,,,, performs the nearest

neighbor matching of points K,,,,,; to K, with Euclidean

distance between coordinates as a measure.

match,,,,, returns two vectors with length equal to
length of K,,,,;. The first one is the distance from a point in
K, to the nearest point in K),. The second vector gives an

index of the nearest point in K}, idx,,,. also gives an index
of the nearest point in K}, but with a distance computed
in the space of descriptors. So, idxg,,,, and idx,,,. are of
the same length. Positive examples for keypoints in image
I, computed as mean coordinates of correctly matching

points are:

K, = coords Kpmj(i), Kh[idxgeom(i)])

for i, such that idx,,,,, (i) = idx (i) and distge,, (i) <
0> that is, indices should match, and geometric distance
should be less than the threshold. Here, coords, (k1 ky) =
=0.5(k, + k). 04, is the threshold in pixels for the case that
distant points are matched correctly. Then K, is projected
to image / with inverse homography:

Hian’ = Kh’Hinv'

mean

Thus, we have targets K and K, for both images that are
needed to compute equation (1).

Descriptor loss
The loss for descriptors consists of three components:

LdeSC(D, Dh’ K, Kh’H):Lgt+L + L

wrong random*

Let element i of vector g; = mej(i)D;(idxgeam[i]), that
is, scalar product of descriptors of key points, be matched
by their coordinates, not by descriptors. Descriptors are
normalized, so scalar product is equal to cosine similarity.
L,, maximises similarity of descriptors for each pair of
points:

1
L,=—>.(1-g).
gt Nth/( 9

L,,ong minimizes similarity of incorrectly matched pairs

of descriptors, of points that are reasonably distant from
each other

1
Lwrong = N ngj.
wrong

For such j, that
idxgeom(j) 7 idxdesc(j) N diStgeom(j) >7.

L, 4ndom minimizes the difference of randomly sampled
descriptors.
1 Nyandom Npoints T
Lrandom = Z mej(i)Sh(Dh(i))
N randomN points  i=0 J=0

sh(D) is randomized shuffle of rows of descriptor matrix,
such that no pair of D,,,,(i), D(i) would belong to the
nearest neighbors as defined by idx,,,,,

Implementation details. The model was implemented
with pytorch framework. Optimization algorithm used
during training is AdamW [12] with initial learning rate
of 0.0005, all other parameters are set to default values,

particularly weight decay has default of 0.01. The proposed
model was trained on the training set images from MS
COCO (Microsoft Common Objects in Context) dataset
[13]. Each minimatch was composed from random crops of
size equal to 256 x 256 px. Weight for heatmap difference
was set to 2000. The network was trained with constant
learning rate for the first 8 epochs, after the 8th epoch
exponential decay of learning rate was used for 10 more
epochs.

Noise augmentation. Noise filters are applied in
predefined order, sequentially to each image. Each filter is
skipped with probability equal to 0.5. Filters used during
training are: additive Gaussian, random brightness, additive
shade, salt & pepper, motion blur, random contrast scale.
After each filter application, the image is checked for
validity. The image is considered ruined if its variance is
less than 10 % of the original in which case the filter is
skipped.

Homographic augmentation. Random homography
matrices are generated as a product of simple
transformations (Fig. 3). Random shift of points is in
the range of =14 px. Perspective shift of side and/or top,
or bottom points are in the range of £85 px. Random
homography augmentation was applied to both / and 7,
with random rotation sampled from the range of +0.08 rad.

Assessing performance. In a two-headed neural
network, there is a trade-off between the performance
of detector and descriptor networks. Computing a single
metric that combines points repeatability and the precision
of matching with descriptors is one way to break ties
among multiple model variants. The authors of the paper
[14] propose the following F1-like metric:

F1 =2 x(precision(D, K) x
x repeatability(K)/(precision(D, K) + repeatability(K)),

that is, harmonic mean of precision of matching and key
points repeatability, which was used for tuning hyper-
parameters during training. Here, D are descriptors and
K are keypoints. So, for all experiments we compute
harmonic mean of all evaluation metrics, which gives a
single number for comparison. We also calculate coverage

rotation

perspective

random shift
Fig. 3. Random homography. Homography is estimated from
random perturbations of rectangle points

Hay4HO-TexHn4eckuii BECTHUK MHPOPMALUMOHHBLIX TEXHONIOMMIA, MeXaHMKN 1 onTukn, 2021, Tom 21, N2 1
96 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 1



A.V. Belikov, A.S. Potapov, A.V. Yashchenko

Table 1. Test results on AirSim dataset

Dataset Fantasy village Village
SuperPoint Precision: 0.86 Precision: 0.72
Repeatability: 0.57 Repeatability: 0.45
Coverage: 0.57 Coverage: 0.65
Harmonic mean: 0.64 Harmonic mean: 0.58
GoodPoint Precision: 0.85 Precision: 0.74

Repeatability: 0.55
Coverage: 0.65
Harmonic mean: 0.66

Repeatability: 0.42
Coverage: 0.70
Harmonic mean: 0.58

SuperPoint 5° rotation

Precision: 0.85
Repeatability: 0.54
Coverage: 0.56
Harmonic mean: 0.63

Mean recall: 0.70
Repeatability: 0.42
Coverage: 0.62
Harmonic mean: 0.55

GoodPoint 5° rotation

Precision: 0.85
Repeatability: 0.54
Coverage: 0.63
Harmonic mean: 0.65

Mean recall: 0.70
Repeatability: 0.39
Coverage: 0.67
Harmonic mean: 0.55

additionally to replication ratio and accuracy for all
datasets. The methodology was proposed in Irschara et
al. [15]. Coverage is a ratio of covered pixels to all pixels

in an image, with a pixel considered as covered when it
lies within a certain distance from correctly matched key

Fig. 4. Comparison of key points: superpoint points (a); goodpoint points (o). Each image has 143 points. Many of goodpoint points
do not correspond to corners due to unsupervised learning, though many points coincide with corners

Fig. 5. Comparison of key points: superpoint points (57) (a); goodpoint points (201) (b).

The same thresholds are used as for previous image
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Fig. 6. Points and matches from HPatches dataset: lighting and contrast variability (a); small shift of point of view (b);
change of perspective (c); change of perspective (d)
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Experiments

Figures 4 and 5 show side-by-side comparison of what
networks tend to select as key points. The threshold is set so
that in the first image the networks detect the same number
of key points. It can be seen that the unsupervised model
is less biased towards corner features, which may be an
advantage or disadvantage depending on scene properties.
More example images are available at the project website
(https://github.com/singnet/image-matching).

AirSim village dataset. AirSim village dataset was
introduced in [14]. It contains two sequences of images
made with varying lighting but with the same camera
positions, ground truth camera pose and depth information,
that may be used for the evaluation of SLAM or related
methods, namely, feature extraction and matching.
Sequences were made by recording camera motion
through a synthetic environment. The test was done on
320 x 240 px resolution. Matching was done with the shift
of 5 frames and radius of coverage set to 20 px. Precision
and repeatability were calculated as an average of matching
in both ways: I, — I;,5, and /;;5 — I, The model was
evaluated with and without roll of 5 degrees. The original
dataset was not generated with a roll in camera motion.

The results are presented in Table 1. Threshold for the
correct match is 3 px. 6,,,,;,, = 0.028 for GoodPoint,
0.015 for SuperPoint. 8,4, = 0.8 for both models. Overall,
GoodPoint demonstrates good precision with lower than
SuperPoint repeatability of key points.

HPatches. For Hpatches dataset the methodology
of LF-net and SuperPoint papers have been used with
thresholds for correct match set to 3 and 5 pixels. Coverage
radius of 25 px was used. The results are presented in
Table 2. The test demonstrates that the models have similar
performance, with SuperPoint being more accurate in
estimating key points positions, while GoodPoint tends to
select more points, thus giving higher coverage, but lower
replication ratio.

Fundus Image Registration Dataset. FIRE [16]
dataset contains 134 pairs of retinal images with ground
truth correspondences for a number of points, which allows
for homography estimation. Also the dataset contains two
masks, for global and local registration methods. Coverage
radius is set to 25 px for this dataset. GoodPoint was tuned

Fig. 7. GoodPoint results on FIRE: before fine-tuning on FIRE
dataset (top), after (bottom). The image is equal to 874 x 874 px

on images from FIRE, with the only change in the training
pipeline being a different size of the crop window.

Both original (trained on MS COCO) and fine-tuned
versions were evaluated. The results are presented in Table 3.
GoodPoint demonstrates better coverage than supervised
SuperPoint, which shows that unsupervised learning of
the key point detector introduced less bias into the model.

There is a trade-off between an accuracy and coverage,
and it is possible to achieve the accuracy of GLAMPoint
(0.91) on the FIRE dataset with the higher threshold for
the key point detector as shown in Table 3. Coverage and
replication ratio were not reported in the paper [7].

Conclusion and future work

A novel method for joint training of key points detection
and description has been introduced, fully unsupervised,
and can be applied to train a model directly on a set
of unlabeled images. The method was used to train a
convolutional model named GoodPoint. GoodPoint is based

Table 2. GoodPoint and SuperPoint Models on HPatches dataset at 05, 3 and 5, px

Parameters Model
3 5
GP SP GP Sp
O eypoint 0.021 0.015 0.021 0.015
Light Replication 0.48 0.53 0.63 0.63
View Replication 0.33 0.45 0.47 0.55
Light Accuracy 0.69 0.70 0.82 0.80
View Accuracy 0.53 0.64 0.67 0.72
Light Coverage 0.60 0.47 0.64 0.50
View Coverage 0.41 0.42 0.45 0.45
Harmonic mean 0.48 0.52 0.59 0.59
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Table 3. Tests on FIRE dataset: original and GoodPoint performance on FIRE with threshold 0y,,,,;,, = 0.075

Models
Metric GoodPoint GoodPoint tuned on FIRE SuperPoint GOOdGP oint wit}z)t(})ngzshold
keypoint — Y+
Accuracy 0.78 0.79 0.84 0.91
Coverage 0.66 0.70 0.54 0.21
Replication 0.82 0.82 0.86 0.91
Harmonic mean 0.75 0.75 0.71 0.44

upon SuperPoint architecture. For the ease of comparison,
only minor changes were introduced, such as removal of
dustbin channel in key point detector, necessary for the
proposed training method. As the result, GoodPoint has
the same number of layers and parameters as SuperPoint.
The trained model was evaluated on diverse datasets and
demonstrated a good performance on natural and synthetic
images, both rich (HPatches, AirSim village) and poor
(FIRE) in corner features. GoodPoint tends to produce
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