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Abstract
Subject of Research. The paper presents the study of algorithms for key point detection and description, widely used 
in computer vision. Typically, the corner detector acts as a key point detector, including neural key point detectors. For 
some types of images obtained in medicine, the application of such detectors is problematic due to the small number 
of detected key points. The paper considers a problem of a neural network key point detector training on unlabeled 
images. Method. We proposed the definition of key points not depending on specific visual features. A method was 
considered for training of a neural network model meant for detecting and describing key points on unlabeled data. The 
application of homographic image transformation was basic to the method. The neural network model was trained to 
detect the same key points on pairs of noisy images related to a homographic transformation. Only positive examples 
were used for detector training, just points correctly matched with features produced by the neural network model for 
key point description. Main Results. The unsupervised learning algorithm is used to train the neural network model. 
For the ease of comparison, the proposed model has a similar architecture and the same number of parameters as the 
supervised model. Model evaluation is performed on the three different datasets: natural images, synthetic images, and 
retinal photographs. The proposed model shows similar results to the supervised model on the natural images and better 
results on retinal photographs. Improvement of results is demonstrated after additional training of the proposed model 
on images from the target domain. This is an advantage over a model trained on a labeled dataset. For comparison, the 
harmonic average of such metrics is used as: the accuracy and the depth of matching by descriptors, reproducibility 
of key points and image coverage. Practical Relevance. The proposed algorithm makes it possible to train the neural 
network key point detector together with the feature extraction model on images from the target domain without costly 
dataset labeling and reduce labor costs for the development of the system that uses the detector.
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Аннотация
Предмет исследования. Алгоритмы выделения и описания ключевых точек широко применяются в 
компьютерном зрении. Обычно в качестве детектора ключевых точек выступает детектор углов, что относится 
в том числе и к нейросетевым детекторам. Для некоторых типов изображений, получаемых в том числе в 
медицине, такие детекторы не подходят из-за малого количества таких ключевых точек. В работе ставится 
задача обучения нейросетевого детектора ключевых точек на неразмеченных данных. Метод. Предложено 
определение ключевых точек, не зависящее от конкретных визуальных признаков. Рассмотрен способ обучения 
нейросетевой модели детектирования и описания ключевых точек на неразмеченных данных. В основе 
метода лежит использование гомографической трансформации изображений. Нейросетевая модель обучается 
детектировать одни и те же ключевые точки на парах зашумленных изображений, связанных гомографической 
трансформацией. Для обучения детектора используются только позитивные примеры, а именно только 
точки, правильно сопоставляемые по признакам, выдаваемым нейросетевой моделью описания ключевых 
точек. Основные результаты. Представленный алгоритм обучения без учителя использован для обучения 
нейросетевой модели. Для удобства сравнения предложенная модель имеет схожую архитектуру и такое же 
число параметров, как и модель, обученная с учителем. Проверка моделей выполнена на трех различных наборах 
данных: с естественными и с синтетическими изображениями, и на фотографиях сетчатки глаза. Предложенная 
модель показывает схожие результаты с обученной с учителем на естественных изображениях и лучшие — на 
фотографиях сетчатки глаза. Также демонстрируется улучшение результатов за счет дополнительного обучения 
рассмотренной модели на изображениях из целевого домена, что является преимуществом относительно модели, 
обучаемой на размеченных данных. Для сравнения использовалось гармоническое среднее от следующих 
показателей: точность и полнота сопоставления по дескрипторам, воспроизводимость ключевых точек и 
покрытие изображения ключевыми точками. Практическая значимость. Алгоритм позволяет обучать 
нейросетевой детектор ключевых точек вместе с моделью описанию ключевых точек на изображениях из 
целевого домена, при этом не требуя трудозатрат на разметку обучающего набора данных, что позволяет снизить 
трудозатраты на разработку системы, использующей детектор. 
Ключевые слова
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Introduction

Local image features (key point detection and descriptor 
extraction) form the base of many computer vision 
applications, most of notably simultaneous localization 
and mapping (SLAM) and augmented reality. Traditionally, 
handcrafted local features were used such as Harris corner 
detector [1], SURF (Speeded-Up Robust Features) [2] and 
many others, but machine learning methods have shown 
their usefulness for the task quite early. For example, FAST 
(Features from Accelerated Segment Test) [3] introduced 
in 2006 uses decision trees for corner detection. With the 
improvement of hardware and deep learning theory, it 
became also possible to learn descriptor extraction and 
matching, for example, as i n SuperGlue [4]. However, 
typically, supervised learning is used mostly that limits the 
applicability of the methods to novel domains.

One of machine learning definitions is the ability of a 
program to improve performance with more information 
[5]. Deployed feature extraction and image matching 
methods are to be applied to unlabeled data, and the 
improvement of their performance naturally supposes 
unsupervised learning. Although supervised learning 
demonstrates frequently better performance, unsupervised 
training of convolutional neural networks for feature 
generation [6, 7] provides state-of-the-art results. This fact 
cannot be achieved for the whole key point detection and 
description of extraction pipeline.

The SuperPoint supervised method [6] features a very 
simple loss function for descriptors, which minimizes 
the difference of descriptors of regions that corresponds 
geometrically, and maximizes the difference otherwise. 

Since the heatmap for key points is a kind of descriptor 
too, it hints at the possibility of building good key point 
detectors in an unsupervised manner by a simple loss 
function. Corners are the popular type of key points 
among handcrafted or supervised detectors. Among 
aforementioned methods, FAST, Harris and SuperPoint 
detect corners (and also line ends), SURF uses blob 
detection.

From a practical point of view, an ideal key point 
detector is the one that optimizes performance of a 
downstream task (image matching) or even target 
application (e.g. SLAM), but this measure might be 
difficult to compute and/or optimize. Instead, we assume 
that good key points should be distributed more or less 
evenly throughout the image and have good repeatability 
between various viewpoints. Good key points should be 
recognizable and distinguishable with descriptors and be 
not loo close.

A new unsupervised algorithm for simultaneous training 
of the key point detector and the descriptor generator is 
proposed. A single two-headed neural network built up on 
SuperPoint architecture is used for both tasks. The proposed 
model can be trained directly on a target domain without 
the need for performing costly domain adaptation, and it is 
applicable in situations in which domain adaptation does 
not work because of large differences between target and 
source domains. The proposed model achieves competitive 
performance with SuperPoint when trained on the same 
dataset, without supervised pre-training, and demonstrates 
better performance on images with low number of corner-
like features. The resulting model is referred hereinafter as 
GoodPoint.
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Goodpoint: unsupervised learning of key point detection and description

Related work

SuperPoint [6] introduced a fast convolutional neural 
network for key point detection and descriptor extraction. 
Training is split into two stages: 
1) supervised training of a detector on synthetic dataset;
2) training of a detector on self-labelled natural images 

together with unsupervised training of a descriptor.
Our work follows SuperPoint architecture, but 

simplifies training procedure, removing supervised pre-
training and self-labelling from the pipeline. Instead, both 
heads of the network are trained on natural images from 
the beginning.

GLAMpoint authors [7] train a key point detector on 
pairs of images related by a homographic transformation. 
The method uses non-maximum suppression on heatmaps 
both on images to extract candidate key points and then 
uses matching with SURF descriptors [2] to mine positive/
negative examples.

Another related research direction is an object key point 
detection. Authors of [8] propose unsupervised key point-
detector learning with conditional image generation. Given 
a pair of images (x, xʹ) with the same objects, but with a 
different viewpoint and/or object pose, a training procedure 
minimizes weighted difference between features extracted 
from image xʹ and the reconstruction ʹ = Ψ(x, K(xʹ)) of 
xʹ. The reconstruction is produced by a neural network Ψ, 
given image x and keypoints from xʹ. The loss function is 
defined as
 L = ∑lαl||Γl (xʹ) – Γl ( ʹ)||2

2.

Here, Γl denotes output of a layer l of a pretrained 
neural network Γ, αl — scalar weight for the loss computed 
from the output of layer l of network Γ.

Here, K is a keypoint detector neural network that learns 
to output k heatmaps
 K(xʹ) ∈ ℝH×W×K,

where H, W are the height and the width of images x and xʹ. 
Each heatmap corresponds to the location of one keypoint 
and is normalized with softmax function to be a probability 
distribution.

Authors of [9] reuse the formulation from work [8] 
restricting to static backgrounds. The main difference 
from [8] is the introduction of feature transport: features 
extracted from both image used to generate xʹ:

Φ(x, xʹ) = (1 – H(K(x)))(1 – H(K(xʹ)))Φ(x) + H(K(xʹ))Φ(xʹ).

Here, K is a key point detector that outputs k heatmaps. 
H is a heatmap image containing isotropic Gaussians 
around each of the key points that are specified by K(x) 
or K(xʹ). Φ is a feature extraction network. Φ takes 
background features (that is, features from locations where 
there are no key points) from both images plus features 
from xʹ near target keypoints K(xʹ). The loss is a squared 
reconstruction error:

 ||xʹ – RefineNet(Φ(x, xʹ))||2
2,

where RefineNet is a convolutional generative model.
LF-Net [10] advances the results of SuperPoint to the 

new state-of-the-art on many datasets, though it requires 

ground truth depth and camera pose information. LF-Net 
projects score map from source image Ii to target image Ij, 
applies non-maximum suppression to sample key points 
and then generates new target score map with Gaussian 
kernel. The average difference

 L(Si, Sj) = |Si – ɡ(w(Sj))|2

of score maps is minimized.
Here, w is a projection function, Si, Sj are score maps 

extracted from images xi, xj, and ɡ is a Gaussian kernel 
application. Descriptors are extracted from key point 
locations, the difference between a correspondent and 
non-occluded descriptors is minimized. Also, there is an 
additional loss for key point scales and orientations.

Architecture overview

The proposed GoodPoint architecture (Fig. 1) is based 
on SuperPoint architecture and consists of a common 
VGG backbone followed by two heads: descriptor and 
detector. The VGG backbone and descriptor heads are left 
unchanged, except for the activation function. The training 
procedure, detector head and loss function are different. 
Activation function used for all layers is leaky ReLU [11]. 
So, the total number of trainable parameters is the same. 
The detector is implemented similar to SuperPoint but 
without dustbin channel. So, the detector head outputs 
tensor P ∈ ℝH/8×W/8×64 instead of P ∈ ℝH/8×W/8×65. This fact 
does not affect performance and simplifies implementation 
since all channels are now being treated equally. Softmax 
is applied along the last axis to ensure that points lie 
not too close that makes it possible to learn only from 
positive examples. After the softmax, normalized tensors 
are reshaped from ℝH/8×W/8×64 to ℝH×W×1 to form a 
confidence map. The descriptor head outputs semi-dense 
tensor D ∈ ℝH/8×W/8×256 which is interpolated in keypoint 
locations.

Training

Training is based on homographic warping of images 
and noise augmentation. The loss is computed on a pair of 
images: original I and warped with random homography 
image Ih. Single homography H is used for all images in a 
mini-batch. Both of the images may be warped, in which 
case they still are related by single homography H, so 
equations do not change. The final loss L is a weighted sum 
of two losses, descriptor loss Ld and detector loss

 L(P, Ph, D, Dh, H) = λ1Ld + λ2Lp,

where λ1, λ2 are weights. P, Ph are heatmaps for images I 
and Ih. D, Dh are descriptors for images I and Ih.

After homographic warp, random noise filters are 
applied independently to images I, and Ih. Details of noise 
augmentation are provided in «noise augmentation» 
section.

Training of key point detection is inspired by expectation-
maximization technique. The network learns to output key 
points that are easy for it to reproduce. It is trained with 
target key points computed with the following procedure 
(Fig. 2): points K found on image I are projected to Ih to 
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form Kproj (1), projected points Kproj are matched with 
Kh by 2D coordinates and by descriptors with the nearest 
neighbor matcher to form two sets of matches Kproj → Kh 
(2), pairs of points that are matched by coordinates and 
by descriptors (namely, pairs are presented in both sets 
of matches) as the nearest neighbors are used to compute 
targets. Targets Khʹ are projected back to image I (3).

A more detailed description is provided in the next 
section.

Key points loss

The loss function for key point detector is a sum of 
negative log-likelihoods of estimated target key point 
positions for both images plus heatmaps difference:

 Lp(P, Ph, K, Kh, H) = Lkeypoints + Lheatmaps,

 , (1)

 .

P[*] denotes selection of points * from 2D heatmap 
P. λh is a weight for heatmap difference. blr(PH) denotes 
homographic projection of heatmap P, similarly, it is 
done for image I. Note that bilinear interpolation of Ph is 
necessary, otherwise the loss will be high even if heatmaps 
are similar due to blr(PH) being much smoother than P 
or Ph.

The sum iterates over points covered by mask for 
image Ih. The mask for image Ih is 2D tensor of the same 
shape as the image, such that for all points p = (x, y) in 
the mask: mask[p] = 1 if projection PHinv ∈ Ih and 0, 
otherwise. Nmask is the number of nonzero elements of the 
mask. Tensors of estimated good keypoints positions Kʹ and 
Khʹ are computed using the following steps with the given 
two heatmaps P and Ph.

Key point arrays K and Kh are extracted from P and Ph 
with maxpooling of different sizes:

 K = maxpool32×32(P),
 Kh = maxpool16×16(Ph).

One key point selection for each region of size equal to 
32 × 32 or 16 × 16 follows from the assumption that key 
points should be distributed more or less evenly throughout 
an image, but not too close. Max pool function performs 
max pooling and returns coordinates of key points (xi, yi) 
as an array. That is, K and Kh have m × 2 and n × 2 shapes.

If the projection of points K to image plane Kh is 
Kproj = KH, the keypoints projected beyond the boundaries 
of the image are discarded. Dproj, Dh are descriptors of 
points Kproj and Kh, that is, Dproj are descriptors extracted 
from image I of keypoints that stay in bounds when 
projected on image Ih.

The next step is to match points in Ih with descriptors 
and with coordinates: 

 distgeom, idxgeom = matchgeom(Kproj, Kh),
 idxdesc = matchdesc(Dproj, Dh).

Fig. 1. Unsupervised training overview. First, key points and descriptors are extracted from the original and warped (WARP) images 
with a two-headed neural network. Descriptors are interpolated in location of key points from semi-dense output. 

Key points are matched with the descriptors and correctly matched points are used as positive examples for detector training. 
All interpolated descriptors are used to calculate descriptor loss

Fig. 2. Key point target estimation

A.V. Belikov, A.S. Potapov, A.V. Yashchenko
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Here, the function matchgeom performs the nearest 
neighbor matching of points Kproj to Kh, with Euclidean 
distance between coordinates as a measure.

matchgeom returns two vectors with length equal to 
length of Kproj. The first one is the distance from a point in 
Kproj to the nearest point in Kh. The second vector gives an 
index of the nearest point in Kh. idxdesc also gives an index 
of the nearest point in Kh, but with a distance computed 
in the space of descriptors. So, idxgeom and idxdesc are of 
the same length. Positive examples for keypoints in image 
Ih computed as mean coordinates of correctly matching 
points are:

 Khʹ = coordsmean(Kproj(i), Kh[idxgeom(i)])

for i, such that idxgeom(i) = idxdesc(i) and distgeom(i) < 
θdist, that is, indices should match, and geometric distance 
should be less than the threshold. Here, coordsmean(k1, k2) = 
= 0.5(k1 + k2). θdist is the threshold in pixels for the case that 
distant points are matched correctly. Then Khʹ is projected 
to image I with inverse homography:

 HinvKʹ = KhʹHinv. 

Thus, we have targets K and Khʹ for both images that are 
needed to compute equation (1).

Descriptor loss

The loss for descriptors consists of three components:

 Ldesc(D, Dh, K, Kh, H) = Lɡt + Lwrong + Lrandom.

Let element i of vector ɡi = Dproj(i)Dh
T(idxgeom[i]), that 

is, scalar product of descriptors of key points, be matched 
by their coordinates, not by descriptors. Descriptors are 
normalized, so scalar product is equal to cosine similarity. 
Lɡt maximises similarity of descriptors for each pair of 
points:

 .

Lwrong minimizes similarity of incorrectly matched pairs 
of descriptors, of points that are reasonably distant from 
each other

 . 

For such j, that 

 idxgeom(j) ≠ idxdesc(j) ∩ distgeom(j) > 7.

Lrandom minimizes the difference of randomly sampled 
descriptors.

 

sh(D) is randomized shuffle of rows of descriptor matrix, 
such that no pair of Dproj(i), D(i) would belong to the 
nearest neighbors as defined by idxgeom.

Implementation details. The model was implemented 
with pytorch framework. Optimization algorithm used 
during training is AdamW [12] with initial learning rate 
of 0.0005, all other parameters are set to default values, 

particularly weight decay has default of 0.01. The proposed 
model was trained on the training set images from  MS 
COCO (Microsoft Common Objects in Context) dataset 
[13]. Each minimatch was composed from random crops of 
size equal to 256 × 256 px. Weight for heatmap difference 
was set to 2000. The network was trained with constant 
learning rate for the first 8 epochs, after the 8th epoch 
exponential decay of learning rate was used for 10 more 
epochs.

Noise augmentation. Noise filters are applied in 
predefined order, sequentially to each image. Each filter is 
skipped with probability equal to 0.5. Filters used during 
training are: additive Gaussian, random brightness, additive 
shade, salt & pepper, motion blur, random contrast scale. 
After each filter application, the image is checked for 
validity. The image is considered ruined if its variance is 
less than 10 % of the original in which case the filter is 
skipped.

Homographic augmentation. Random homography 
matrices are generated as a product of simple 
transformations (Fig. 3). Random shift of points is in 
the range of ±14 px. Perspective shift of side and/or top, 
or bottom points are in the range of ±85 px. Random 
homography augmentation was applied to both I and Ih 
with random rotation sampled from the range of ±0.08 rad.

Assessing performance. In a two-headed neural 
network, there is a trade-off between the performance 
of detector and descriptor networks. Computing a single 
metric that combines points repeatability and the precision 
of matching with descriptors is one way to break ties 
among multiple model variants. The authors of the paper 
[14] propose the following F1-like metric:

 F1 = 2 × (precision(D, K) × 
 × repeatability(K)/(precision(D, K) + repeatability(K)),

that is, harmonic mean of precision of matching and key 
points repeatability, which was used for tuning hyper-
parameters during training. Here, D are descriptors and 
K are keypoints. So, for all experiments we compute 
harmonic mean of all evaluation metrics, which gives a 
single number for comparison. We also calculate coverage 

Fig. 3. Random homography. Homography is estimated from 
random perturbations of rectangle points

Goodpoint: unsupervised learning of key point detection and description
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additionally to replication ratio and accuracy for all 
datasets. The methodology was proposed in Irschara et 
al. [15]. Coverage is a ratio of covered pixels to all pixels 

in an image, with a pixel considered as covered when it 
lies within a certain distance from correctly matched key 
point.

Table 1. Test results on AirSim dataset

Dataset Fantasy village Village

SuperPoint Precision: 0.86
Repeatability: 0.57
Coverage: 0.57
Harmonic mean: 0.64

Precision: 0.72
Repeatability: 0.45
Coverage: 0.65
Harmonic mean: 0.58

GoodPoint Precision: 0.85
Repeatability: 0.55
Coverage: 0.65
Harmonic mean: 0.66

Precision: 0.74
Repeatability: 0.42
Coverage: 0.70
Harmonic mean: 0.58

SuperPoint 5° rotation Precision: 0.85
Repeatability: 0.54
Coverage: 0.56
Harmonic mean: 0.63

Mean recall: 0.70
Repeatability: 0.42
Coverage: 0.62
Harmonic mean: 0.55

GoodPoint 5° rotation Precision: 0.85
Repeatability: 0.54
Coverage: 0.63
Harmonic mean: 0.65

Mean recall: 0.70
Repeatability: 0.39
Coverage: 0.67
Harmonic mean: 0.55

Fig. 4. Comparison of key points: superpoint points (a); goodpoint points (b). Each image has 143 points. Many of goodpoint points 
do not correspond to corners due to unsupervised learning, though many points coincide with corners

Fig. 5. Comparison of key points: superpoint points (57) (a); goodpoint points (201) (b). 
The same thresholds are used as for previous image

A.V. Belikov, A.S. Potapov, A.V. Yashchenko
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Fig. 6. Points and matches from HPatches dataset: lighting and contrast variability (a); small shift of point of view (b); 
change of perspective (c); change of perspective (d)

Goodpoint: unsupervised learning of key point detection and description
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Experiments

Figures 4 and 5 show side-by-side comparison of what 
networks tend to select as key points. The threshold is set so 
that in the first image the networks detect the same number 
of key points. It can be seen that the unsupervised model 
is less biased towards corner features, which may be an 
advantage or disadvantage depending on scene properties. 
More example images are available at the project website 
(https://github.com/singnet/image-matching).

AirSim village dataset. AirSim village dataset was 
introduced in [14]. It contains two sequences of images 
made with varying lighting but with the same camera 
positions, ground truth camera pose and depth information, 
that may be used for the evaluation of SLAM or related 
methods, namely, feature extraction and matching. 
Sequences were made by recording camera motion 
through a synthetic environment. The test was done on 
320 × 240 px resolution. Matching was done with the shift 
of 5 frames and radius of coverage set to 20 px. Precision 
and repeatability were calculated as an average of matching 
in both ways: Ii → Ii+5, and Ii+5 → Ii. The model was 
evaluated with and without roll of 5 degrees. The original 
dataset was not generated with a roll in camera motion.

The results are presented in Table 1. Threshold for the 
correct match is 3 px. θkeypoint = 0.028 for GoodPoint, 
0.015 for SuperPoint. θdesc = 0.8 for both models. Overall, 
GoodPoint demonstrates good precision with lower than 
SuperPoint repeatability of key points.

HPatches. For Hpatches dataset the methodology 
of LF-net and SuperPoint papers have been used with 
thresholds for correct match set to 3  and 5 pixels. Coverage 
radius of 25 px was used. The results are presented in 
Table 2. The test demonstrates that the models have similar 
performance, with SuperPoint being more accurate in 
estimating key points positions, while GoodPoint tends to 
select more points, thus giving higher coverage, but lower 
replication ratio.

Fundus Image Registration Dataset. FIRE [16] 
dataset contains 134 pairs of retinal images with ground 
truth correspondences for a number of points, which allows 
for homography estimation. Also the dataset contains two 
masks, for global and local registration methods. Coverage 
radius is set to 25 px for this dataset. GoodPoint was tuned 

on images from FIRE, with the only change in the training 
pipeline being a different size of the crop window.

Both original (trained on MS COCO) and fine-tuned 
versions were evaluated. The results are presented in Table 3. 
GoodPoint demonstrates better coverage than supervised 
SuperPoint, which shows that unsupervised learning of 
the key point detector introduced less bias into the model. 

There is a trade-off between an accuracy and coverage, 
and it is possible to achieve the accuracy of GLAMPoint 
(0.91) on the FIRE dataset with the higher threshold for 
the key point detector as shown in Table 3. Coverage and 
replication ratio were not reported in the paper [7].   

Conclusion and future work

A novel method for joint training of key points detection 
and description has been introduced, fully unsupervised, 
and can be applied to train a model directly on a set 
of unlabeled images. The method was used to train a 
convolutional model named GoodPoint. GoodPoint is based 

Table 2. GoodPoint and SuperPoint Models on HPatches dataset at θdist 3 and 5, px

Parameters Model

3 5

GP SP GP SP

θkeypoint 0.021 0.015 0.021 0.015
Light Replication 0.48 0.53 0.63 0.63
View Replication 0.33 0.45 0.47 0.55
Light Accuracy 0.69 0.70 0.82 0.80
View Accuracy 0.53 0.64 0.67 0.72
Light Coverage 0.60 0.47 0.64 0.50
View Coverage 0.41 0.42 0.45 0.45
Harmonic mean 0.48 0.52 0.59 0.59

Fig. 7. GoodPoint results on FIRE: before fine-tuning on FIRE 
dataset (top), after (bottom). The image is equal to 874 × 874 px
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Goodpoint: unsupervised learning of key point detection and description

upon SuperPoint architecture. For the ease of comparison, 
only minor changes were introduced, such as removal of 
dustbin channel in key point detector, necessary for the 
proposed training method. As the result, GoodPoint has 
the same number of layers and parameters as SuperPoint. 
The trained model was evaluated on diverse datasets and 
demonstrated a good performance on natural and synthetic 
images, both rich (HPatches, AirSim village) and poor 
(FIRE) in corner features. GoodPoint tends to produce 

dense detections, which corresponds to higher coverage. 
The results open the way for the following improvements 
and/or research directions.

Replacement of maxpooling for key point extraction 
with theoretically sound sampling methods, such as 
e-greedy sampling, gives the possibility for augmenting 
local descriptors with global features, in the way it is done 
in SuperGlue during matching [4].

Table 3. Tests on FIRE dataset: original and GoodPoint performance on FIRE with threshold θkeypoint = 0.075

Metric
Models

GoodPoint GoodPoint tuned on FIRE SuperPoint GoodPoint with threshold 
θkeypoint = 0.075

Accuracy 0.78 0.79 0.84 0.91
Coverage 0.66 0.70 0.54 0.21
Replication 0.82 0.82 0.86 0.91
Harmonic mean 0.75 0.75 0.71 0.44
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