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Abstract

The paper considers methods of countering speech synthesis attacks on voice biometric systems in banking. Voice
biometrics security is a large-scale problem significantly raised over the past few years. Automatic speaker verification
systems (ASV) are vulnerable to various types of spoofing attacks: impersonation, replay attacks, voice conversion,
and speech synthesis attacks. Speech synthesis attacks are the most dangerous as the technologies of speech synthesis
are developing rapidly (GAN, Unit selection, RNN, etc.). Anti-spoofing approaches can be based on searching for
phase and tone frequency anomalies appearing during speech synthesis and on a preliminary knowledge of the acoustic
differences of specific speech synthesizers. ASV security remains an unsolved problem, because there is no universal
solution that does not depend on the speech synthesis methods used by the attacker. In this paper, we provide the analysis
of existing speech synthesis technologies and the most promising attacks detection methods for banking and financial
organizations. Identification features should include emotional state and cepstral characteristics of voice. It is necessary
to adjust the user’s voiceprint regularly. Analyzed signal should not be too smooth and containing unnatural noises
or sharp interruptions changes in the signal level. Analysis of speech intelligibility and semantics are also important.
Dynamic passwords database should contain words that are difficult to synthesize and pronounce. The proposed approach
could be used for design and development of authentication systems for banking and financial organizations resistant
to speech synthesis attacks.
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AHHOTAIUA

PaccMOTpeHbI METOIbl IPOTUBOACIHCTBHUS aTakaM CHHTE3a pedy Ha OaHKOBCKHE rOJI0COBBIC OMOMETPHYECKHE CHCTEMBI.
be3omacHOCTE roI0COBBIX OMOMETPHUUECKUX CUCTEM SABIISETCS MacIITaOHOI TpoOIeMoi, 3HAYUTENIbHO Pa3BUBAIOIIASICS
B mocienHue roapl. CHCTeMbl aBTOMaTHYeCKOH Bepudukanuu ropopsmero (ASV) ysa3BUMBI 1 pa3IHYHBIX THIIOB
CIy(pUHT-aTaK: UMIIEPCOHATH3ALHS, TOBTOPHOE BOCIPOMU3BEACHNE, IpeoOpa3oBaHue U CHHTE3 peun. TexHomorun
CHHTe3a peun cTpeMutensHo pa3suBatoTes (GAN, Unit selection, RNN u zip.), mosToMy Takue ataku cerofHs Handomee
omnacHbl. [loka3aHo, 4TO MPOTHUBOAEHCTBUE CIy(QHHT-aTakaM MOXKET OBITh OCHOBAHO Ha ITOMCKE aHOMAIHMH (a3bl 1
YacTOTHI TOHA, KOTOPBIE MOSIBISIIOTCS. BO BPEMsI CHHTE3a PedH, a TakKe Ha IPeABapUTEIEHOM 3HAHHN aKyCTHYECKUX
pa3numii KOHKPETHBIX CHHTE3aTopoB peun. besomacHocte ASV octaercst HepelleHHO! mpoOIeMoi, He CYIIeCTBYeT
YHHUBEPCAJIBbHOTO PEIICHHs, KOTOpOe Obl HE 3aBHUCEJIO OT MCIOJIb3YEMbIX 3JIOyMBIIIICHHUKOM METOJ0B CHHTE3a
peun. IIpencraBieH aHaIu3 CyHIECTBYIOIIUX TEXHONOTUIl CHHTE3a peun. PaccMoTpeHbl Hanbosee mepcrneKTHBHbIE
METOABI OOHApy)KEeHUs aTak A1 OAaHKOBCKMX M (pMHAHCOBBIX opraHm3anuil. Kommiekc Mep J0MKEH yIUTHIBATh
9SMOLMOHAILHOE COCTOSHNE KJIMEHTa 0aHKa, KeICTPaJbHbIE XapaKTepUCTUKHN Toioca. Heobxonnuma perymspHas
KOPPEKTHPOBKA TOJIOCOBOTO OTIIEUaTKa MOIB30BATElIs IS ITOICP>KaHUS €T0 aKTyalbHOCTH. AHATH3UPYeMbI CHTHAII
HE JOJDKEH OBITH CIMIIKOM IUIAaBHBIM, COAEPKaTh HESCTECTBEHHBIC IITYMBI, Pe3KHE MePephIBbI, M3MEHEHUS YPOBHS
curHaia. BakxHoe 3HaueHHe UMEIOT BHATHOCTb PEYH, BEISIBICHHE U YUeT €e CeMaHTHYECKUX ocoOeHHocTeil. basa
JIMHAMHYECKUX MTapoJiel TOJDKHA COePIKaTh CII0KHO CHHTE3UPyeMbIe U TPOU3HOCHMBIE ci1oBa. [IpeamaraeMplil moaxon
MOXKET OBITh UCIOJIB30BaH Il HPOSKTHPOBAHUS M Pa3pabOTKU CUCTEM ay TeHTH(HUKALMK U1 OAHKOBCKUX U (PUHAHCOBBIX
OpraHM3alui, yCTOHYMBBIX K aTaKaM CHHTE3a PEUH.

KuroueBsbie ciioBa
OuomMeTpusi, paclo3HaBaHME I10 TOJIOCY, ayTeHTU(HUKANUs B OAHKOBCKOH c(epe, CHHTE3UPOBAHHAS PEUb, BBIIBICHHE
(anscudukamum rojgoca
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Introduction

The advent of the technologies that allow accurately
identifying persons by their biometric characteristics and
the development of image recognition technologies have
stimulated the improvement of biometric identification
systems. The future of biometrics has attracted much
attention from researchers, creating a wide variety of
modalities currently used by biometric systems. Following
the researchers, many organizations from various fields,
including banking, began to implement and use biometrics
for authentication, identification, access control, and other
purposes.

Today, most identification/authentication systems are
based on analyzing biometric samples publicly available

for observation, such as fingerprints, face and palm
geometry, voice, and some others. The widespread use of
these modalities is due to the availability of the necessary
reading equipment and low implementation costs. All
of these modalities make it possible to authenticate or
identify subjects, but they differ in the value of type I and
type Il errors: FRR (False Rejection Rate) and FAR (False
Acceptance Rate).

Static biometric samples, which are robust to changes
over time, have sufficient uniqueness and allow high
accuracy of person recognition. However, they are more
vulnerable to attacks from malefactors than dynamic
biometric samples, as they can change at the will of
the subject (as is the case, for example, for voices or
handwritten signatures). Static biometric samples can
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be more easily falsified. For example, there are several
technologies for creating fake fingerprints [1], and 3D
masks and even photographs can be used for such purposes.

Automatic Speaker Verification (ASV) systems are
a promising area for improving identification quality.
The collection of voice data does not require a special
capture device, as it can be obtained using a standard sound
recorder available in smartphones, stationary phones,
tablets, or laptops. Voice is a dynamic characteristic that
increases the reliability of biometric systems and creates a
great identification potential for their use.

The use of ASV for remote identification/authentication
can allow banks to extend the availability of their financial
services, such as opening an account or obtaining a loan,
while freeing customers from having to visit bank branches
in person.

According to J’son & Partners Consulting, an analytics
company, the average annual growth rate of the ASV
market by 2022 is estimated at 21.12 %. It is higher than
the growth rate of systems with other biometric modalities.

A number of independent studies have confirmed
the vulnerability of ASV technology to spoofing threats.
However, compared to verification involving other
biometric modalities, spoofing and countermeasure
research for ASV is still in its infancy. A current barrier
to progress is a lack of standardization, making it difficult
to compare results generated by different researchers. The
ASVspoof initiative aims to overcome this through the
provision of standard corpora, protocols, and metrics to
support common evaluations.

Attackers can use ASV spoofing techniques for various
types of fraud, including identity theft. For the banking
sphere, this issue is the most relevant one due to the amount
of information and services that users gain access to upon
successful authentication. Even rare cases of information
leakage can lead to significant financial and reputational
losses.

Known ASV vulnerabilities include spoofing attacks
through impersonation, replay, voice conversion, and
speech synthesis. The latter type of attack is the most
dangerous.

The relevance of this research is due to
1) an increase in the number of ASV spoofing technologies

based on voice synthesis;

2) the development of technologies for falsifying biometric
characteristics, such as DeepFake voice, which is based
on Generative Adversarial Networks (GANs);

3) the imperfection of methods used to counter attacks.

It is impossible to use remote voice biometric
authentication systems without implementing methods of
counteracting spoofing attacks. Therefore, there is a need
to develop a means of detecting speech synthesis attacks,
which would increase the security of ASV.

The architecture of a Typical Automatic Speaker
Verification System

Biometric identification/authentication systems rely
on the individual biometric characteristics of a person and
perform the function of automatic identity recognition.
Unlike other systems, ASV uses both physiological (static)
and behavioral (dynamic) user features (voice and speech) [2].

ASV works similarly to other identification systems,
such as those based on fingerprints or faces. However,
it is necessary to reduce noise and areas which do not
contain useful signal components for required audio signal
preprocessing.

To ensure the correct operation of ASV for identification
and verification, users must be registered in a database.
Figure 1 shows the ASV model architecture as a process
that includes the stages of data input, signal pre-processing,
feature extraction, template creation (registration), and
comparison with a template (verification, identification) [3].

The second stage is usually performed jointly with the
third stage. At the stage of comparison with the template,
the system returns the results of searching users closest
to the presented voice sample from the database when
identifying the subject. At the same stage, when verifying
the subject, the system returns the probability of the
subject’s image coinciding with the template.

Many researchers propose using cepstral coefficients
as features. To calculate the cepstrum, the signal is passed

Creating and

Input data Pre-processing storing a template Comparison
(" - N - -
Speaker's speech Features | N Template creating COmlzZ;Spcigt\glth a]
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Fig. 1. The ASV architecture
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through a high-frequency amplifying filter, divided into
equal frames. Then, the frequency spectrum is smoothed at
the frame boundaries using the window function. Afterward,
the spectrum is found and multiplied with the spectrum of
the received filter bank using the Fourier transform. The
logarithm is taken from the resulting spectrum envelope
and the inverse discrete Fourier transform is applied.

c[n] = FH{InlF {x(n)}[},

F — forward Fourier transform, 7! — reverse Fourier
transform.

Mel-frequency cepstral coefficients are most commonly
used to describe the characteristics of a phoneme [4]. To
convert the frequency from Hz to Mel, the following
formula is used:

f
= -
Mel(f)=25951g(1 200

f— frequency, Hz.

The Hamming window is the most popular choice
among other window functions such as the rectangular
window, Kaiser window, Blackman window, and Hann
window. Cochlear, linear frequency, bark frequency, and
other cepstral coefficients are also used in research. In
practice, other features make it possible to form a unique
speaker template, which helps to distinguish the amplitude-
frequency, spectral, spectral-temporal, formant, and phase
characteristics. There are also methods for automatic
speaker recognition through calculating the transfer
function of the vocal tract, such as Joint Factor Analysis
(JFA), Total Variability Matrix (TVM), and Probabilistic
Linear Discriminant Analysis (PLDA).

Also, there are a large number of methods and
algorithms for synthetic speech detection, including
Gaussian Mixture Models (GMM) [5], Support Vector
Machines (SVM) [6], Neural Networks (NN) [7], Hidden
Markov Models (HMM) [8], Relative Phase Shift (RPS)
[9], and Vector Quantization (VQ) [10].

The variability of building voice authentication systems
is increasing. The lack of an effective combination of
extracted speech features, input signal processing methods,
and auxiliary functions complicates the search for the
optimal algorithm to implement ASV in the banking sphere.

Main Types of Spoofing Attacks
on Voice Biometric Systems

Over the last few years, the accuracy of voice
recognition systems has increased significantly. However,
most organizations utilize these systems either in a limited
mode or not at all. That is due to concerns related to
information security breaches, with intruders bypassing
the system using techniques for imitating a legal user or a
bank customer. These fears are fully justified since there are
several methods that allow attackers to gain unauthorized
access through ASV. The main types of attacks on voice
biometric systems are provided below.

Impersonation attacks consist of voice imitation or
change by a malefactor without the use of any special
devices. It is necessary for the attacker’s voice to be similar
to the target user’s voice to successfully implement the

attack. Therefore these security bypass methods have low
efficiency. Achieving a match that is close to 100 % is
extremely difficult [11] due to individual biometric voice
characteristics.

Replay attacks are used to get unauthorized access
by falsifying the user’s voice with the help of special
devices [12]. This attack is implemented by recording the
legal user’s voice on a device and then replaying it for
identification. Its success depends on certain system design
features. For example, this type of attack is not effective
in text-dependent verification systems and a dynamic
passphrase.

The largest threat for ASV is attack methods based
on converting the attacker’s voice to the user’s voice
through the use of voice conversion systems. The algorithm
includes the stages of training and conversion, where the
trained system changes the attacker’s voice according to the
required parameters. The involvement of the attacker in the
process reduces the threat to the ASV.

Speech synthesis attacks are based on text-to-speech
technologies. Specially trained systems ensure a natural
voice (timbre, smoothness of sound, intonation), the
correct placement of signs, stress, and the decoding of
special characters. At the verification stage, a synthesized
passphrase (for text-dependent systems) or arbitrary speech
is created in real-time using the received synthesized voice
and an intercepted password. Then this is used to attempt
authentication.

Figure 2 shows the different methods of the main types
of spoofing attacks on ASV. For example, the most popular
method of spoofing attacks is Unit Selection [13—15]. It
is implemented in 2 stages. First, a sequence of sound
fragments is built considering compliance with the required
characteristics. Then it is concatenated to make speech
natural. About 8 minutes of a user’s speech recording is
enough for training modern synthesis systems [16].

The construction of modern ASV should be based on
providing a high level of resistance to various types of
attacks. Currently, some of these attack methods pose a
great threat to such systems. Also, new technologies are
being created, and existing ones are improved to perform
spoofing attacks. As a result, it is necessary to find solutions
and create mechanisms to protect ASV from known and
potential threats and increase its reliability for use in the
banking sphere.

Methods for Countering Attacks
on Voice Biometric Systems

The specifics of the ASV scope in the banking sphere
make it necessary to comply with certain requirements.
Those include requirements for the entire system (reliability,
high recognition accuracy, performance) as well as separate
stages, such as pre-processing of biometric features (noise
resistance, independence from the speaker). This makes
it possible to exclude some combinations of extracted
speech features with verification methods. However, it
is necessary to study more thoroughly the rest to achieve
the optimal system parameters. The most important of
them are FAR, FRR, and EER (Equal Error Rate) — the
coefficient at which FAR and FRR are the same [17].
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Methods of Spoofing Attacks on ASV SystemsJ

[ Impersonation ] [ Replay ] [ Voice Conversion ] [ Speech Synthesis ]
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Fig. 2. Existing spoofing attack methods on ASV systems

One solution to increase the security of the ASV
involves an attack countering subsystem. In recent years,
research has been actively carried out in the field of ASV
protection, mostly aimed at identifying the necessary
countermeasures and ways to detect spoofing attacks.

There are two main methods of countering replay
attacks. The first one is measuring the difference between
the channels of recorded and natural speech. Finding
recording parameters is also useful to secure ASV.

Attacks based on speech conversion can be detected
by natural dynamic variability analysis, which is the
characteristic of genuine speech, and voice quality analysis.
The latter approach is less dependent on explicit knowledge
of the attack but is less efficient.

Countermeasures against speech synthesis attacks are
based on searching for phase and tone frequency anomalies.
These are known as specific acoustic differences of speech
synthesizers, e.g. dynamic ranges of spectral parameters
that appear during speech synthesis. Currently, there is
no universal solution that is independent of the speech
synthesis methods used by attackers.

The Gaussian mixture model, support vector machine,
deep neural networks (DNN), and i-vector are common
methods of countering the above-mentioned attacks.
Different variations of cepstral coefficients are often used
for feature extraction. Amplitude, phase, and frequency
analysis of the input signal are conducted to identify the
inconsistency of natural speech.

There are several methods of acoustic feature extraction.
Cepstral voice characteristics are widely used: Mel
Frequency Cepstral Coefficent (MFCC), Linear Frequency
Cepstral Coefficients (LFCC), Inverse Mel-Frequency
Cepstral Coefficients (IMFCC), constant Q phase-based
Cepstral Coefficent (CQCC), normalized cosine Cepstral
Coefficent (CNPCC), and Cochlear Filter Cepstral
Coefficients plus Instantaneous Frequency (CFCCIF).

However, there are other types of feature extraction
methods. We could highlight the one based on group
delay: Group Delay (GD) or Modified Group Delay
(MGD), Modified Group Delay Function Phase Spectrum
(MGDFPS), All-Pole Group Delay Function (APGDF).
Other feature extraction methods type is based on spectral
or frequency characteristics: Log Magnitude Spectrum
(LMS), Fundamental Frequency Variation (FFV),
Instantaneous Frequency Derivative (IF), Residual Log
Magnitude Spectrum (RLMS). Besides these types, it is
also worth noting two more methods: Baseband Phase
Difference (BPD) and Pitch Synchronous Phase (PSP).

Detailed information about the existing methods of
countering attacks and the achieved results are presented
in Table 1.

The conducted analysis made it possible to conclude
that replay attacks are highly dangerous. The high EER of
replay attacks is caused by imperfections of the proposed
safety measures for ASV. However, the success of these
attacks depends on the quality and quantity of the voice
material and how dependent the system is on the text.
Replay attacks can be detected by finding identical signal
parts for the same phrases. The attacker can attempt
to modify certain voice parameters or add noise to the
recording. This will negatively impact identification or have
no effect at all because of signal pre-processing performed
by ASV. Since replay attacks are almost entirely ineffective
against text-independent ASV systems, the usage of
dynamic passwords is another effective way of countering
such attacks. This protection method is already being
studied. According to these studies, the GMM method is
better suited to short sentences for user verification, but
with the increase of sentence length (up to 7-9 seconds),
the i-vector method produces lower ERR values [25].

This allows us to conclude that replay technologies and
attacks do not have the same potential as voice synthesis.
At the current time it is less effective, but for which all of
the above restrictions do not apply.

Synthesis technologies have great development
potential. They are more difficult to identify and, as a result,
pose the greatest danger. Current ASV technologies can
barely distinguish natural speech from the synthesized
one using hybrid speech synthesis systems based on Unit
Selection and HMM technologies [16] and a large training
sample (about 4 hours). Usage of such volumes of material
remains situational for replay attacks.

Voice synthesis attacks remain a major threat to ASV in
the future. Proactive action in this regard is one of the most
important objectives of protection systems.

Basics for Building ASV Resistant
to Speech Synthesis Attacks

Currently, there is a large number of software solutions
for speech synthesis, including free ones'. They can
build and edit the necessary dictionary databases, support

I iSpeech website, Text to Speech for Free — Natural
Sounding TTS, https://www.ispeech.org/text.to.speech (date:
25.09.2020).
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Table 1. The comparison of existing methods of countering attacks on ASV

Work | Feature extraction method Classifier Database* | ERR, %
Replay Attack
[18] | MFCC/LFCC/IMFCC GMM RSR2015 corpus 23.55/12.37/7.50
- DS: 120 speakers (60M, 60F)
i-vector/SVM ES: 60 speakers (30M, 30M) 26.32/17.37/10.92
DNN 16.45/8.16/8.29
[19] | MFCC SVM Own dataset 5/3.75/3.12
CS1: 20 speakers
CS2: 10 speakers
More details in [18]
Synthesis speech attack
[20] | CQCC/APGDF/FFV GMM ASVspoof 2015 dataset 0.03/0.04/2.02
TS: 25 speakers (10M, 15F)
[21] | MFCC/CNPCC/MFCC-CNPCC | GMM G = 3750, S = 12625 0.041/5.347/2.694
[22] | LMS/RLMS/GD/MGD/IF/BPD/PSP | Multilayer Ds: 32 Speak_ef (15M, 20F) 0.543/0.486/0.114/
Perceptron G =3497, S = 49875 1.572/0.428/3.431/1.345
(MLP) ES: 36 speakers (20M, 26F)
G =9404, S = 193404
Voice conversion attack
[23] MFCC+CFCCIF GMM ASVspoof 2015 dataset 1.211
[24] | MGDFPS SVM/i-vector NIST SRE2006 8.9

* TS — training set, DS — development set, ES — evaluation set, CS — common set, M — male, F — female, G — genuine, S — spoofed.

technologies to improve synthesized speech, are easy to
use, and allow creating customized systems based on the
software.

Due to the rapid development of these technologies,
identifying and exploiting the weak points of existing voice
synthesis technologies is the key to making ASV resistant
to speech synthesis. Table 2 shows the main disadvantages
of speech synthesis systems that can be used in ASV.

Unpredictable responses of the voice synthesis system
to random distortion, adding more information, or anything

that the attacker cannot predict is an obvious vulnerability
of voice synthesis attacks. However, the construction of an
attack detection system based on voice synthesis for ASV
cannot be dependent only on the analysis of a large number
of accidents, since such protection will not be stable enough.

To build a reliable remote ASV that can be applied
in the banking sphere, it is necessary to develop a stable
system. Such a system should be based on the following
possible solutions, the complex application of which
together gives the required result.

Table 2. The main disadvantages of speech synthesis systems that can be used in ASV

Disadvantage

Cause

Synthesized speech feature

Processing information
entered into the synthesis
system

The complexity of the initial data processing by the synthesis system
(normalization, removal of homonymy/homography, recognition of
original speech in “voice conversion” systems, etc.) and low dependency
on language, such as Russian.

Violation of data flow integrity
and decrease in the quality of
synthesized speech

Delay in processes

The system needs to understand the context of the pronounced information
for high-quality reproduction of the synthesized voice. Moreover, the
transformation processes themselves take time (especially in “voice
conversion” systems). The system does not start speech synthesis until
data input is complete or as directed by the attacker.

Presence of unnatural delays

Interference, noise,
distortion while entering
information

Random errors in typing or the synthesis system itself, sticky keyboard
keys, random sound in the background (during morphing) can cause
the synthesis system to function incorrectly and lead to a decrease in
the quality of synthesized speech. Increasing the sampling rate of voice
samples used for speech synthesis may lead to anomalies such as speckle-
noise at the edge of merging synthesized sound elements (phonemes,
syllables, words, etc.).

Distortions of the input signal,
anomalies (including speckle
noise) at the edge of merging
synthesized sound elements

Abrupt interruptions in the
stream of synthesized voice

Random, unexpected questions of the operator, external factors, for
example, another voice in the background registered in the morphing,
insertion of extraneous sounds.

Abrupt interruptions and/
or swings in the synthesized
voice stream

Lack of intonation and
emotional dimension

The emotional component of various texts is unique, and the machine is
unable to unequivocally interpret them and recognize emotions.

The lack of emotional
dimension or intonation
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First of all, it is necessary to consider the emotional
states of bank customers. Currently, there is no voice
synthesis technology capable of imitating a person
in a certain psychophysiological state. Emotional
state consideration requires the use of voice cepstral
characteristics. Secondly, the stability and increased
security of ASV rely on regularly adjusting the user’s
voice fingerprint to maintain its relevance. Additionally,
signal and speech intelligibility analysis is required. The
signal should not be too smooth, contain unnatural noises,
sharp interruptions, changes in the signal level, including
point changes, for example, in a phoneme. Reverse Speech
Recognition must accurately identify the information
reported by the customer.

Generating a dynamic database of passwords containing
symbols that are difficult to synthesize and pronounce
(abbreviations, homonyms, numbers, and so on) is required
to protect ASV against replay attacks. Lastly, it is necessary
to understand the language’s semantic features (the
correct semantic load of speech structures, conjugations,
inflections) and conduct appropriate speech analysis to
determine the content of possible anomalies.

Conclusion

The paper considers an important problem for
information security in the banking sphere that involves
countering attacks on voice biometric systems. This
problem is quite new, urgent, and difficult to solve.

A description of the main types of attacks on voice
biometric systems is presented. These attacks include those
based on impersonation, reproduction, speech conversion,
speech synthesis. Arguments pointing toward the danger of
attacks based on speech synthesis are given.

The existing methods of countering attacks on voice
biometric systems are considered. It is concluded that
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