HAYYHO-TEXHUYECKMI BECTHUK MHOOPMALIMOHHBIX TEXHOMIOM A, MEXAHUKW 1 OMTUKN

man-uioHb 2021 Tom 21 N2 3 http://ntv.ifmo.ru/ S35 YHUBEPCUTET UTMO

et SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS “Hm“pMAu“uHthx IEXH[""][“H MEXAH“K“ “ I]"m“
YHUBEPCUTET UTMO May-June 2021 Vol. 21 No 3 http://ntv.ifmo.ru/en/ v
ISSN 2226-1494 (print) ISSN 2500-0373 (online)

doi: 10.17586/2226-1494-2021-21-3-401-409

An efficient mechanism to detect and mitigate an ARP spoofing attack
in software-defined networks
Ghadeer Darweshl, Alisa A. Vorobeva2™?, Viktoriia M. Korzhuk3
L.2.3 ITTMO University, Saint Petersburg, 197101, Russian Federation

I ghadeerdarwesh32@gmail.com, https://orcid.org/0000-0003-1116-9410
2 Alice w@mail.ru™, http://orcid.org/0000-0001-6691-6167
3 vmkorzhuk@itmo.ru, http://orcid.org/0000-0002-0240-9067

Abstract

The work focuses on software-defined network security, as it was always one of these foremost critical concerns due
to the centralized nature in SDN architecture where many serious attacks in traditional networks still appear in SDN
networks such as ARP spoofing attack despite many existing security algorithms, methods and systems. In this work, we
proposed a new approach to secure SDN from an ARP poisoning attack. The new solution extends the controller with a
new module that uses a new algorithm to detect and mitigate the ARP spoofing attacks according to three states of each
host in the network. The new mechanism involves the DHCP and manual assignment of IP addresses using three classes
to classify the hosts according to their situations in the network. The CHT helps to set the host in an intermediate state
between verifying and banning and detect the attack according to the next step of the host. The proposed mechanism
was tested successfully in a simulated environment using Mininet and POX controller. The solution was effectively
able to accomplish the objective for which it was built, with a limited overhead on the network. This proposed solution
neither has an extra overload in the network, nor requires any changes in the infrastructure or additional hardware to
install. According to the experiment results of this solution, the average time to detect the ARP spoofing attack is about
11 ms, with minor overhead on the controller CPU.

Keywords

ARP, Software-Defined Networking (SDN), ARP cache poisoning attack, ARP spoofing, SDN security, OpenFlow
security

For citation: Darwesh G., Vorobeva A.A., Korzhuk V.M. An efficient mechanism to detect and mitigate an ARP spoofing

attack in software-defined networks. Scientific and Technical Journal of Information Technologies, Mechanics and
Optics, 2021, vol. 21, no. 3, pp. 401-409. doi: 10.17586/2226-1494-2021-21-3-401-409

VIIK 004.89

¢ dekTHBHBINH MeXaHU3M BbIsIBJIeHUs U NpoTuBOAecicTBUS ARP-cnyuHr arakam
B NIPOIrpPaMMHO-oNpeaesisieMbIX CeTIX
Taaup Japeum!, Anuca Anapeesna Bopoonesa?™, Bukropusi Muxaiisiosna Kopsxyk3
1,23 Vausepcurer UTMO, Cankr-IletepOypr, 197101, Poccniickas ®eneparust

I ghadeerdarwesh32@gmail.com, https://orcid.org/0000-0003-1116-9410
2 Alice w@mail.ru™, http://orcid.org/0000-0001-6691-6167
3 vmkorzhuk@itmo.ru, http://orcid.org/0000-0002-0240-9067

AHHOTAIUA

IIpenmer ucciaegoBanmsi. B pabote paccMOTPEHBI BOIIPOCHI 00eCIIeueHUsI 0€30I1aCHOCTH PO PaMMHO-OIPEISIIIEMBIX
ceTell. ApXUTEKTypa TaKHX CeTedl MMeeT LECHTPAIM30BAHHBINA XapakTep U 00ecHedeHue 3aIUThl UPKYIUpYIoIeit
B HUX MH(OPMALUU 3aTpyJHEHO. MHOrHUe Kjlaccuyeckue aTaku, HampuMmep, ataka ¢ nmogmenoit ARP, ocratorcs
aKTyaJbHBIMHU ISl IPOIPAMMHO-OIPEAEIAEMBIX CETel HECMOTpPS Ha CYIIECTBOBAHHE PA3IHUHBIX alTOPUTMOB,
METONOB U cucTeM 3amuThl. Metoa. [lpeanoxen HOBBIN monxon K 3ammte SDN OT aTaku MOAMEHBI (OTpaBICHNUS)
ARP. Pemrenne 3akmodaeTcs B pacIMpeHUH (yHKIHOHATA KOHTPOIIEpa 3a CIET JOMOTHATEIBHOTO MOTYIIS, KOTOPBIH

© Darwesh G., Vorobeva A.A., Korzhuk V.M., 2021

Hay4HO-TexHN4eCcKkuih BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MexaHukn n ontuku, 2021, Tom 21, N2 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 3

401

An efficient mechanism to detect and mitigate an ARP spoofing attack in software-defined networks

Ha OCHOBaHMH HOBOTO aJITOPUTMa U aHaJHM3a COCTOSHUN XOCTOB II03BOJISIET OOHAPYXKHUTH aTaku ¢ noamenod ARP n
0CJ1a0uTh UX BIHMsAHHE HA ceTb. OCOOEHHOCTD NPEUIAraeMOro MEXaHu3Ma — COBMECTHOE HCIIOJIb30BaHUE IIPOTOKOIA
DHCP, pyunoro Ha3zHaueHus [P-aqpecoB u kilacCHpUKALMH XOCTOB CETH Ha TPU KJjacca B COOTBETCTBUH C MX
cocrosiaueM B cetr. CHT moMoraet mepeBecTH XOCT B IPOMEKYTOYHOE MEKIY MMPOBEPKOM U OIIOKMPOBKOW COCTOSIHUE
1 00HapYXHUTh aTaKy B COOTBETCTBHH CO CIEAYIOIIUM mIaroM xocta. OcHOBHBIe pe3yabTaThbl. [IpeamoxenHbIit
MEXaHN3M YCHEITHO MPOTeCTHPOBAaH B CMOAEIMPOBAHHON cpesie ¢ ucmonb3oBanreM Mininet n konTposmiepa POX.
Ha ocHoBaHMH BBITIOJIHEHHBIX 9KCIEPUMEHTOB c/elIaH BEIBOJ 00 3()p()EeKTHBHOCTH MPEATIOKEHHOTO PEHISHUs st
MIOCTABJICHHOH IeJIN U COOTBETCTBHH YCJIIOBHIO OTPAaHUYEHHOCTH pecypcoB cetu. [IpakTHdeckasi 3HAYHMOCTD.
JlocTOMHCTBaMH IPEJIOKSHHOTO PEIICHUSI SIBIISIFOTCSI OTCYTCTBHE JIOTIOJIHUTEIBHOI HArpy3KU CETH M HEOOXOAMMOCTh
BHECEHUS U3MECHEHUH B MH(PPACTPYKTYPy CETH MIIM YCTAaHOBKH JAOHOIHUTENIBHOr0 000pynoBanus. CoracHo pesysbraram
IKCIIEPUMEHTOB MOKa3aHo, YTO CpeHee BpeMsi oOHapyxeHus araku ARP-ciyduHra Ha OCHOBaHMHM IMTPEIIOKEHHOTO
MEXaHM3Ma COCTABIISET OKOJIO 11 MC M He MOBBIIIAET 3HAYNTENIBHO HATPYy3Ky Ha HEHTPAIbHBIH MPOLECCOP KOHTPOILIEPA.
KnroueBbie ci10Ba

ARP, nporpammvHo-onpeaensemsie cetd (SDN), orpasnsitomas araka ARP-kama, ARP-ciiydunr, 6e3omacHocts SDN,
6e3omacHocTs OpenFlow

Ccepuika nuis uutupoBanus: Jlapsum I, Bopoosesa A.A., Kopxyk B.M. DddexTuBHbIiI MeXaHU3M BBISBICHUS
n nporuBoxpeiicTBus ARP-crydunr atrakam B mporpaMMHO-ONpenensieMbIX ceTax // HayaHo-texnunueckuit
BECTHHK MH(OPMAIMOHHBIX TEXHOJIOTHH, MexaHUKH u onTukd. 2021. T. 21, Ne 3. C. 401-409 (na ann. s3.). doi:
10.17586/2226-1494-2021-21-3-401-409

Introduction The controller: forms the brain of the network which
manages the entire network and controls all forwarding
devices by making decisions and installs flows to these
devices. The controller uses the southbound interface to
connect with the OpenFlow devices and the northbound
interface to communicate with applications.

Applications: are programs that determine the behavior
of the network, they are load balancers, intrusion prevention
systems (IPS), controls, intrusion detection systems (IDS),
access controls or other important applications.

SDN data devices: they are underlying devices (routers,
switches...) that receive instructions from the controller
and forward the packets according to the flows that were
installed.

OpenFlow. The OpenFlow protocol is widely explained
in the ARP cache poisoning attack document [5]. OpenFlow
is the protocol used in the SDN to install flows and build
the forwarding tables in the forwarding devices. It helps the
controller to build a comprehensive view of the network
topology and forms a communication dialect between
the controller and the data plane devices via its actions,
statics and rules for matching packets. When a controller
receives a packet coming from the switcher it decides
how to deal with this packet and builds an OpenFlow
message that includes instructions using FLOW_MOD
commands. This decision will teach the switch how to
interact with this packet and similar packets in the future.

Software-defined networking (SDN) networks have
made a quantum leap compared to traditional networks
that depend on physical infrastructure such as routing
devices to make decisions and lead packets through the
network [1]. SDN enables centralized administration of
the whole network by decoupling the control plane which
controls the whole network from the data plane which
forwards the traffic in the network. Separating the brain
of the networks from the forwarding devices makes the
network more dynamic. It helps the administrators to
control the entire network via a single controller instead
of configuring device by device and worrying about
basic device types. These devices only forward packets
and do not participate in making decisions. SDN uses the
“OpenFlow” protocol to forward the controller’s decisions
and rules to the switches. While the term SDN becomes
more popular giving promises for future solutions in the
networking field, SDN security is still a real challenge
due to the SDN architecture and centralized design of the
network provided by the controller. From the attackers’
point of view, the controller is a single point of failure and
a rich place to steal information, other forwarding devices
are also frail defenders against their attacks [2, 3]. These
considerations open the entryway for new threats and more
serious attacks comparing to traditional networks such as
DOS, repudiation, ARP spoofing and other critical attacks.
In the first section of this work, we will present a short
clarification of the SDN architecture, then we will shed Application
light on the ARP protocol and how ARP spoofing attack is
performed in SDN. The next section will present the most
effective achieved solutions and related works in this area.
The last two sections will present our proposed mechanism ~ control
to detect and prevent ARP poisoning attacks in SDN, test
experiment and performance metrics evaluation.

NorthBound API

SouthBound APT

Infrastructure

Background

SDN architecture. Document [4] clarified widely
the architecture of SDN, where there are three primary
components (Fig. 1). Fig. 1. Conceptual architecture of SDN

402 Hay4HO-TeXHN4eCKnin BECTHUK MHPOPMALNOHHbBIX TEXHONOMMIA, MEXaHUKKN 1 onTukn, 2021, Tom 21, N2 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 3

G. Darwesh, A.A. Vorobeva, V.M. Korzhuk

OpenFlow has numerous points of interest, it supports
virtualization and includes all specifications to detect
network vulnerabilities, applying security policies and
communications between the controller and the forwarding
device.

DHCP protocol. DHCP [6] stands for the dynamic host
configuration protocol and is used on the IP networks where
the DHCP server assigns IP addresses and other important
information(such as default gateway and domain name
server DNS) to hosts automatically when connected so they
can communicate through the network.

DHCP greatly simplifies the setup and ensures that
devices can join the network with the correct configurations.
However, in some situations, the users need to use static
IP addresses for some reason or because other devices
connect to them frequently. If the user assigns himself an IP
address that is already used by other devices, an IP address
conflict occurs causing that one or both devices will lose
connection until the conflict has been solved. To solve the
conflict problem, most systems use ARP packets to detect
a duplicate IP address.

ARP (Address Resolution Protocol):

— Traditional ARP. ARP is an OSI two-layer protocol
specified in document RFC 826 [7]. Its main function
is to find a MAC address for a known IP address. For
this mapping process, it maintains an ARP table with
IP-MAC mapping which stores in the RAM of the
device. The ARP frame contains the IP and the MAC
address of the sender and the receiver, it also has an
operation code to clarify the ARP type message (1 for
ARP request, 2 for the reply).

As we have mentioned, the ARP protocol is used to
detect the duplicate address problem in the network, this
can be done using the two ARP packets types:

— ARP probe: is an ARP request packet that is sent as
broadcast frames to validate if an IP address is free to
use. So, if the host wants to assign himself a new static
IP address, first of all, it will send an ARP probe packet
polling the network if this IP is already in use. If a host
already has this address, it will answer with an ARP
reply.

— ARP announcement: if the IP address is not in use
and the ARP probe does not generate any response,
then the host will start to announce that it has this IP
address now by broadcasting an ARP request as an ARP
announcement.

ARP Spoofing attack in SDN. ARP poisoning cache
attack was always one of the most serious attacks in SDN
due to the SDN design, where the attacker could get control
over the entire network by impersonating the controller
identity. Using faked ARP requests or replies, the attacker
could poison the ARP cache of the controller or other hosts,
which paves the way for other attack forms such as DOS,
MITM attacks, etc.

— Spoofing in regular ARP: It is similar to an ARP
spoofing attack in the traditional network. The attacker
uses fake ARP requests or replies to start the attack and
poison the ARP cache of other hosts in the network,
taking advantage of that the controller does not have
a mechanism to detect the attack and will forward the
packets without checking.

— Spoofing in Proxy ARP: It’s a more serious attack
and will get the attacker a chance to control the whole
network. In proxy ARP, the attacker will send fake
packets and impersonate the identity of other hosts in
the network to poison the controller cache.

Related works

Since 2010 several real studies have been carried out in
SDN security and effective solutions have been proposed
to detect and mitigate ARP spoofing attacks in SDN. In the
following section, we will focus on the common and latest
research in this field and their limitations in performance
or other critical features:

FICUR. FICUR [8] extends the POX controller with
an application that monitors and analyzes the ARP traffic
to detect and mitigate the ARP spoofing attack according
to pre-defined traffic patterns. FICUR can handle attacks
against Proxy and Regular ARP. FICUR results described
in [8] show that this solution can detect the ARP spoofing
attack in 16.056 ms. However, this solution is still not
effective for large-scale networks, the author also did not
consider the delay in performance metric evaluation. Other
works like FICUR based on the traffic pattern is “OrchSec”
which has its limitations too.

SPHINX. This solution presented in [2] uses the
OpenFlow messages to create flow graphs, then employs
the metadata maintained by the flow to detect the ARP
spoofing attacks. This mechanism works correctly to
achieve the goal and can be successfully deployed over
four different controllers. The experiment with 14 switches
and 10 servers in [2] shows that the mechanism can quickly
detect the ARP spoofing attack with an attack detection time
of 44 pus. However, this solution needs a long time to collect
and modify the metadata which affects the efficiency of the
detection process. DistBlockNet is another solution that
depends on the flow graph mechanism, but it was designed
for ToT-based networks and it is not ready to be used in
traditional networks.

Solution based on IP_AC address binding. An
example of this type of solution is SARP_NAT [9]. SARP
NAT simply stores a database with MAC address and IP
address for hosts that have sent an ARP request and check
always if an incoming ARP reply is a response to a request
that was stored in the database. But this solution also has its
shortcomings as it causes too much load on the controller
for large-scale networks. Other solutions in this category
are Scalable Ethernet Traffic Architecture Using SDN
(SEASDN) [10], L3-ARPSEC [11], Secure Binder [12],
NetWatch [13], NFGA [14]. They use maintained database
for IP. MAC bindings with different proposed algorithms
to detect and mitigate the attack [15]. However, each one
has its limitations either in CPU utilization, response time,
or other important metrics.

Patches. Solutions such as “Anticap! and Antidote”
uses the OS patches to mitigate the ARP spoofing attack but
this solution has its limitations because it requires different

I M. Barnaba and M. Barnaba, “anticap.” Available at: https:/
github.com/antifork/anticap (accessed: 17.04.2021).

Hay4HO-TexXHU4eCcKuit BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MexaHukn 1 ontuku, 2021, Tom 21, N2 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 3

403

An efficient mechanism to detect and mitigate an ARP spoofing attack in software-defined networks

patches for different operation systems, which effects the
whole communication process.

ARP cryptographic. Using cryptography in
communication is still a reliable solution, but the encryption
and decryption process causes overload on the network
and consumes more resources. S-ARP is a proposed
mechanism that uses cryptography to protect nodes in the
network [16].

Software tools. Tools like XArp! and ARPWatch?
are also used to detect the attack in SDN but still have
their trust problems such as false positives and false
negatives.

Static ARP mapping. This solution stops the attack
by using the manual configuration of ARP entries. Thus,
the attacker has no chance to spoof an already registered
host. Works [17, 18] are an example of such a mechanism,
but it is obvious that these solutions are effective only in
small-scale networks and cause a great overhead on large-
scale ones.

The given short review strengthened our motivation
to start this work and come up with a new solution, that
should detect and mitigate the ARP spoofing attack in SDN
within a short time and limit overload on the controller.

The proposed solution

To detect the ARP cache poisoning attack, we have
extended the POX controller with a new module that plays
the role of a firewall. This module analyses incoming traffic
and sorts the sender according to pre-defined conditions.

Our new module will work exactly as the L2 learning
switch module in forwarding packets and install rules to
switches, but also it will effectively analyze ARP packets
and mitigate the ARP spoofing attack in a short time.

This solution is effective because the new POX
controller module analyses all ARP types and effectively
detects the attack with no effects on the ARP normal work.
It also considers the two ways to assign IP to the host
(static and automatic using DHCP). Also, it prevents the
controller from faked ARP flooding and stops the attacker
in a very short time. It also includes a mechanism to block
any host who wants to flood the controller with a huge
number of packets and to affect its decision. Our three
classes mechanism provides an easy way to classify the
hosts in the network, which can be used in further solutions
to stop other attacks on SDN.

Solution design. The component was extended with our
proposed algorithm, with no need for additional software
or hardware to be installed. Also, the ARP spoofing part
in the algorithm does not affect the normal L2 component
to correctly forward packets and provide communications
between hosts in the network.

Intercept packets. Our mechanism will process the
ARP packets only, so for incoming packets to the controller,

I Christoph Mayer. XArp — Advanced ARP Spoofing
Detection. 2018. Available at: http://www.xarp.net/ (accessed:
17.04.2021).

2 Arpwatch. Lawrence Berkeley National Laboratory. 2009.
Available at: ftp://ftp.ee.lbl.gov/arpwatch.tar.gz (accessed:
17.04.2021).

we will filter packets according to their type. ARP packets

will enter the function implementing our algorithm, other

packets will be forwarded as usual, according to the rules
included in the L2 forwarding switch module.

Classify the hosts according to the current situation.
The main purpose of this mechanism is to classify the hosts
in our SDN network into three classes, so that it will be
easier to decide how to deal with incoming packets:

— VHT: Verified hosts table, contains the hosts that we
have already verified. While they have no changes in
their addresses and act in a normal way, their packets
will be forwarded and can be used to verify the states
of other new hosts.

— CHT: The candidate host table, contains the hosts which
are in the middle way to be in the VHT, they are still
acting as usual, but they did not finish yet the verifying
steps.

— BHT: Stands for the banned host table.The attacker will
be classified in this table, so the controller will direct
the switches to drop their packets for some time that can
be managed.

Build the mechanism to detect the attack. Our
algorithm starts processing the ARP packets by checking
the source MAC address of the Ethernet packet and the
source MAC address included in the ARP packet.

If the two MAC addresses are not the same, the
controller will give a warning, that a new ARP spoofing
attack was detected and direct the switches to drop the
packet and block the attacker for some time.

Another important mechanism in our solution is to
count the similar ARP packets on the switches and the
controller, which have the same metadata. The algorithm
uses a separate process to count the number of similar
incoming packets during some periods and will detect an
ARP spoofing attack when this parameter will satisfy some
conditions.

This condition will protect the controller against critical
attacks which will try to fool our algorithm and send
professional tricky fake packets.

The main part of the algorithm works as follows the
DHCP server:

1. If the host asks the DHCP server to give an IP, then
the DHCP server is responsible for giving a trusted
IP address and confirms that this IP is not spoofed.
Receiving a “DHCP ACK” from the server will
announce that this IP is verified and the controller will
add it to the VHT.

2. If the host is trying to set its IP address manually, then
the controller will consider the following conditions:
— If the host is new and has no entry in the VHT,

then look at its packet series. To pass the checking
process and to be registered in the VHT, the host
should first send a number of ARP probes (register
in the CHT) and then an ARP announcement. The
announcement should follow the ARP probe after
some time with no responses from other hosts that
this IP is already in use.

— If the host is already in the VHT and sends packets,
they will be forwarded, taking into account that if
the packet is an ARP reply sent as a response to the
ARP probe that an IP address already in use, then

404

Hay4yHOo-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MexaHuKn n ontukn, 2021, Tom 21, N2 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 3

G. Darwesh, A.A. Vorobeva, V.M. Korzhuk

the corresponding candidate host will be removed
from the CHT.

To ensure that the controller will deal correctly with
the attacker attempts aiming to poison the ARP cache, let
us check the attacker’s states while it is trying to start the
ARP spoofing attack:

1. Tt has not been registered and has not asked for an IP
address yet but it wants to start the attack immediately.
Hence, the attacker will try to send an ARP probe
(register in the CHT) and then an ARP announcement
to spoof some IP, but after receiving a response
from any host that it has already this IP the attacker
will be removed from the CHT. Sending the ARP
announcement without an entry in the CHT will then
detect the attacker and add him to the BHT. Any other
behavior from the attacker will cause also its blocking
and detecting the attack immediately.

2. The second situation is that it had already been
registered and had taken its place in the VHT before it
decided to start the attack. If the attacker wants to spoof

Incoming packet

NO An ARP packet
request or reply

ACK from DHCP
server

A

Add to Verified

YES

Verified host

any other address, then he has to send packets with

different addresses and will not consider in the VHT

and the controller will act with him exactly in the same

way as described above.

The flowchart. The flowchart of our proposed solution
to detect and mitigate the ARP poisoning attack is shown
below (Fig. 2).

Implementation

Environment setup. To test our mechanism,
Mininet version 2.2.2 was used with 2 cores and 2 GB
of RAM. The host machine has Windows 10 installed as
the operating system and has an Intel Core i5 processor
with 6 GB of RAM. The POX controller was installed
as a remote controller Ubuntu Virtual Machine with 2
cores and 2 GB of RAM and connected to the Mininet
via a virtual interface. As mentioned before, a number of
components (such as forwarding.12 learning, openflow.
webservice, openflow.of 01, Log, host tracker) are used in

YES

YES Destination is NO N
candidate
Check VHT Ann and Host
add Candidate host in CHT
Remove Candidate Sé:g ;:::;:::
hosts reply
YES NO
Candidate host
Add to verified
\ [4
.
L Forward Check VHT
and install flows to [€ 5 nf:l:: :‘}ﬂ?i;:;“s < Drop the packet
- > switches S add to BHT to blocked
Fig. 2. Flowchart to detect and mitigate the ARP poisoning attack

Hay4HO-TexXHU4eCcKuit BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MexaHukn 1 ontuku, 2021, Tom 21, N2 3 405

Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 3

An efficient mechanism to detect and mitigate an ARP spoofing attack in software-defined networks

Controller

SDN switch 2

Host 2

Host 1 100,02

10.0.0.1

ARP poisoning packets

SDN switch 3

Host 4

Host 3 10004

10.00.3
Attacker

Fig. 3. Topology of SDN network used in the experiments

L "Node: h1" — O X
root@Bmininet-vm:“/mininet# arp -n
Address HWltype HWaddress Flags Mask Iface
10,0,0.4 ether 00300300:;00:00304 C hl-et
ho
10,0,0.,2 ether 00:00:00:00:00:02 C hl-et
ho
10,0,0.3 ether 00:00:00:00:00:03 C hl-et
ho
rootBmininet-vm:“/mininet# arp -n
Address HWtype Huaddress Flags Mask Iface
10,0,0.4 ether 00:00300300:00303 C hl-eth0
10.0,0.2 ether 00:00:00:00:00:02 C h1l-eth0
10,0,0,3 ether 00:00:00:00:00:03 C hl-eth0

root@mininet-vms“/mininet# Jl

Fig. 4. Poisoning cache on hl

the experiment. All tests were performed on the topology
shown in Fig. 3. In order to collect and gather statistics
about the connectivity and throughput in our network, we
used the Iperf tool!l. In this experiment, all links of the
network will have 100 Mbps bandwidth, 5 ms delay, 0 %
loss and maximum packet queue size equal to 1000. We
had to limit these parameters to prevent the load on the
controller and get more accurate results.

Test Scenario. Using the arpspoof tool in the dsniff
package?, various spoofed ARP packets were forwarded to
the victim to simulate a real ARP spoofing attack.

The experiment was performed according to the
topology shown in Fig. 3: a network with Controller,
3 switches, and 4 hosts. Using the arpsoof tool, the attacker
(Host 3) sent the faked packets to the victim (Host 1).

Fig. 4 shows the result of the ARP spoofing attack. The
second command was executed after the attack had been
performed.

I iPerf — The TCP, UDP and SCTP network bandwidth
measurement tool. Available at: https://iperf.fr/ (accessed:
17.04.2021).

2 dsniff : Bionic (18.04) : Ubuntu. Available at: https://
launchpad.net/ubuntu/bionic/+package/dsniff (accessed:
17.04.2021).

Performance evaluation metrics

For the previous testing scenario, the proposed solution
has worked perfectly to detect and mitigate the ARP
spoofing attack. It was able to drop the spoofed packets and
block the attacker for all the following attempts to poison
the victim’s ARP cache:

— a spoofed MAC address of the ARP header;

— a spoofed MAC address of the Ethernet header;

— spoofed MAC addresses of the ARP header and Ethernet
header;

— a faked IP address of the sender;

— a faked IP address of the destination.

Here are important metrics, which were measured
during the experiment.

Attack Detection Time. This metric is defined as
the total time elapsed to detect the ARP Cache Poisoning
attack, Fig. 5 presents the time elapsed for the process of
detection of the ARP spoofing attack. It shows that the time
elapsed for the detection is very short and it took only 2 ms
to detect faked ARP requests and 1.7 ms for ARP replies.

Attack Mitigation Time. This metric is defined as the
total time elapsed from detecting the attack to completely
blocking the attacker. The time elapsed for the mitigation of

406

Hay4yHOo-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MexaHuKn n ontukn, 2021, Tom 21, N2 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 3

G. Darwesh, A.A. Vorobeva, V.M. Korzhuk

m Detection time m Mitigation time

12

[e e}

Time, ms
i

ARP Request ARP Reply

Fig. 5. Detection and mitigation time results

the ARP spoofing attack was presented in Fig. 5. It shows
that the time elapsed for the mitigation process is very short
too, and it took only 11 ms for attacks with ARP requests
and 11.5 ms with ARP replies.

CPU Utilization of the Controller. It should be noted
that the controller plays a significant role in the network,
runs applications and performs many tasks. Thus, CPU
utilization is a very important metric that should be taken
into account. The NMON tool! was used to record the
results. And the CPU usage was measured before, during
and after the attack. According to (Fig. 6), we can notice
that the CPU usage with the modified component, was
increased from 3.4 % to 4.5 % (by about 0.9 %) during the
attack. Then the module successfully stopped the attack
and the CPU usage returned back to 3.3 %. This result is
achieved due to the algorithm we built. Here the controller
processes incoming ARP packets, while the white table
helps to make fast decisions and consume more CPU
utilization only in dubious situations during the attacks
where the controller requires more load to process the
verification from the correct host and block the attacker.

Throughput. Using the Iperf tool we performed the
throughput test for the topology shown in Fig. 3. All links
of the network will have 100 Mbps bandwidth, 5 ms delay.
We compared two throughput scenarios, the first one with
the normal L2 learning component in the POX controller
(pure L2), another one is our modified component with
the mitigation mechanism (modified L2). In this scenario,
a TCP load has been generated using the Iperf and sent
from Host 4 to Host 1. According to (Fig. 7), we can notice
that the controller with the pure L2 component is hardly
affected by the attack, and the throughput reached 0 in
some moments. With the modified component, we can
notice that the throughput has decreased only 10 % of the
bandwidth and back to its normal situation in a very short
time after blocking the attacker. The figure below (Fig. 7)
shows the throughput test results before, during and after
the attack for the two scenarios.

I nmon for Linux | Main / HomePage. Available at: http://
nmon.sourceforge.net/pmwiki.php (accessed: 17.04.2021).

100
X
E 50
Q
|
34 4.5 33
0 _—
0 4 8 12
Time, ms
Fig. 6. CPU Utilization on the POX controller
® Modified L2 ® Pure L2
100
X
= 50 48
2 50 39
5
=
[5°
m
0
0
0 4 8 12
Time, ms

Fig. 7. Throughput test between the host and the victim

Conclusion

In this work, we presented a new mechanism to prevent
the software-defined networks against ARP spoofing attack.
The solution works effectively with minimum latency to
mitigate both ARP requests and replies attacks. The new
mechanism involves the DHCP and manual assignment
of IP addresses using three classes to classify the hosts
according to their situations in the network. The CHT helps
to set the host in an intermediate state between verifying
and banning and detect the attack according to the next
step of the host. This proposed solution neither has an extra
overload in the network, nor requires any changes in the
infrastructure or additional hardware to install. Moreover,
it does not affect the usual work of the protocols like ARP
or OpenFlow. This work has also presented a review of
the proposed solutions against ARP spoofing attacks in the
SDN environment. According to the experiment results of
this solution, the average time to detect the ARP spoofing
attack is very short, with minor overhead on the controller
CPU.

For the current work, the new mechanism its limitations,
namely, the use of a single controller network and testing
in a virtual environment. For future work, the solution can
be further developed to handle ARP attacks in multiple
controller SDN networks with high availability, and it is
highly recommended to test the described method on a
physical testbed to observe the performance parameters in
real network environments.

Hay4HO-TexXHU4eCcKuit BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MexaHukn 1 ontuku, 2021, Tom 21, N2 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 3

407

An efficient mechanism to detect and mitigate an ARP spoofing attack in software-defined networks

10.

12.

14.

15.

16.

17.

References

Kreutz D., Ramos F.M.V., Verissimo P.E., Rothenberg C.E.,
Azodolmolky S., Uhlig S. Software-defined networking:
A comprehensive survey. Proceedings of the IEEE, 2015, vol. 103,
no. 1, pp. 14-76. doi: 10.1109/JPROC.2014.2371999

Dhawan M., Poddar R., Mahajan K., Mann V. SPHINX: Detecting
security attacks in software-defined networks. Proc. 2015 Network
and Distributed System Security Symposium, 2015, pp. 8—11. doi:
10.14722/ndss.2015.23064

Hong S., Xu L., Wang H., Gu G. Poisoning network visibility in
software-defined networks: New attacks and countermeasures. Proc.
2015 Network and Distributed System Security Symposium, 2015. doi:
10.14722/ndss.2015.23283

Feamster N., Rexford J., Zegura E. The Road to SDN: An intellectual
history of programmable networks. Queue, 2013, vol. 11, no. 12,
pp. 2560327. doi: 10.1145/2559899.2560327

Nathan A.J. Scobell A. How China sees America: The Sum of
Beijing’s Fears. Foreign Affairs, 2012, vol. 91, no. 5, pp. 32-47.
Droms R. RFC 2131 — Dynamic Host Configuration Protocol. 1997.
Available at: https://tools.ietf.org/html/rfc2131 (accessed:
04.11.2020).

Plummer D. An Ethernet Address Resolution Protocol: Or Converting
Network Protocol Addresses to 48.bit Ethernet Address for
Transmission on Ethernet Hardware. doi: 10.17487/RFC0826
Nehra A., Tripathi M., Gaur M.S. FICUR: Employing SDN
programmability to secure ARP. Proc. 7" IEEE Annual Computing
and Communication Workshop and Conference. (CCWC), 2017,
pp. 7868450. doi: 10.1109/CCWC.2017.7868450

Alharbi T., Durando D., Pakzad F., Portmann M. Securing ARP in
Software Defined Networks. Proc. 415! IEEE Conference on Local
Computer Networks (LCN), 2016, pp.523-526. doi:
10.1109/LCN.2016.83

Jehan N. Haneef A.M. Scalable Ethernet Architecture using SDN by
Suppressing broadcast traffic. Proc. 5t International Conference on
Advances in Computing and Communications (ICACC), 2015, pp. 24—
27. doi: 10.1109/ICACC.2015.66

. De Oliveira R., Shinoda A., Schweitzer C., Iope R., Prete L. L3-

ARPSec — A Secure Openflow Network Controller Module to
control and protect the Address Resolution Protocol. Proc. XXXIII
Simpdésio Brasileiro de Telecomunicagdes, 2015, pp. 1-4. doi:
10.14209/sbrt.2015.29

Jero S., Koch W., Skowyra R., Okhravi H., Nita-Rotaru C.,
Bigelow D. Identifier binding attacks and defenses in software-
defined networks. Proc. 26" USENIX Security Symposium, 2017,
pp. 415-432.

. Balagopal D., Rani X.A.K. NetWatch: Empowering software-defined

network switches for packet filtering. Proc. 15! International
Conference on Applied and Theoretical Computing and
Communication Technology (iCATccT), 2015, pp. 837-840. doi:
10.1109/ICATCCT.2015.7456999

Cox J.H., Clark R.J., Owen H.L. Leveraging SDN for ARP security.
Proc. IEEE SoutheastCon 2016, 2016, pp. 7506644. doi:
10.1109/SECON.2016.7506644

Shah Z., Cosgrove S. Mitigating ARP Cache Poisoning attack in
Software-Defined Networking (SDN): A survey. Electronics, 2019,
vol. 8, no. 10, pp. 1095. doi: 10.3390/electronics8101095

Bruschi D., Ornaghi A., Rosti E. S-ARP: A secure address resolution
protocol. Proc. 19t Annual Computer Security Applications Conference
(ACSAC), 2003, pp. 66—74. doi: 10.1109/CSAC.2003.1254311
Hou X., Jiang Z., Tian X. The detection and prevention for ARP
Spoofing based on Snort. Proc. 2010 International Conference on
Computer Application and System Modeling (ICCASM), 2010,
pp. V5137-V5139. doi: 10.1109/ICCASM.2010.5619113

. Ortega A.P.,, Marcos X.E., Chiang L.D., Abad C.L. Preventing ARP

cache poisoning attacks: A proof of concept using OpenWrt. Proc. 6
IEEE/IFIP Latin American Network Operations and Management
Symposium (LANOMS), 2009, pp.5338799. doi:
10.1109/LANOMS.2009.5338799

Authors

Ghadeer Darwesh — Student, ITMO University, Saint Petersburg,
197101, Russian Federation, http://orcid.org/0000-0003-1116-9410,
ghadeerdarwesh32@gmail.com

Jluteparypa

Kreutz D., Ramos F.M.V., Verissimo P.E., Rothenberg C.E.,
Azodolmolky S., Uhlig S. Software-defined networking:
A comprehensive survey // Proceedings of the IEEE. 2015. V. 103.
N 1. P. 14-76. doi: 10.1109/JPROC.2014.2371999

Dhawan M., Poddar R., Mahajan K., Mann V. SPHINX: Detecting
security attacks in software-defined networks // Proc. 2015 Network
and Distributed System Security Symposium. 2015. P. 8-11. doi:
10.14722/ndss.2015.23064

Hong S., Xu L., Wang H., Gu G. Poisoning network visibility in
software-defined networks: New attacks and countermeasures // Proc.
2015 Network and Distributed System Security Symposium. 2015.
doi: 10.14722/ndss.2015.23283

Feamster N., Rexford J., Zegura E. The Road to SDN: An intellectual
history of programmable networks // Queue. 2013. V. 11. N 12.
P. 2560327. doi: 10.1145/2559899.2560327

Nathan A.J. Scobell A. How China sees America: The Sum of
Beijing’s Fears // Foreign Affairs. 2012. V. 91. N 5. P. 32-47.
Droms R. RFC 2131 — Dynamic Host Configuration Protocol. 1997
[Dnexrponnsiii pecypc]. URL: https://tools.ietf.org/html/rfc2131
(mara o6pamenus: 04.11.2020).

Plummer D. An Ethernet Address Resolution Protocol: Or Converting
Network Protocol Addresses to 48.bit Ethernet Address for
Transmission on Ethernet Hardware. doi: 10.17487/RFC0826
Nehra A., Tripathi M., Gaur M.S. FICUR: Employing SDN
programmability to secure ARP // Proc. 7t IEEE Annual Computing
and Communication Workshop and Conference (CCWC). 2017.
P. 7868450. doi: 10.1109/CCWC.2017.7868450

Alharbi T., Durando D., Pakzad F., Portmann M. Securing ARP in
Software Defined Networks // Proc. 415t IEEE Conference on Local
Computer Networks (LCN). 2016. P.523-526. doi:
10.1109/LCN.2016.83

. Jehan N. Haneef A.M. Scalable Ethernet Architecture using SDN by

Suppressing broadcast traffic // Proc. 5t International Conference on
Advances in Computing and Communications (ICACC). 2015. P. 24—
27. doi: 10.1109/ICACC.2015.66

. De Oliveira R., Shinoda A., Schweitzer C., Tope R., Prete L. L3-

ARPSec — A Secure Openflow Network Controller Module to
control and protect the Address Resolution Protocol // Proc. XXXIII
Simposio Brasileiro de Telecomunicagdes. 2015. P. 1-4. doi:
10.14209/sbrt.2015.29

. Jero S., Koch W., Skowyra R., Okhravi H., Nita-Rotaru C.,

Bigelow D. Identifier binding attacks and defenses in software-
defined networks // Proc. 26th USENIX Security Symposium. 2017.
P. 415-432.

. Balagopal D., Rani X.A.K. NetWatch: Empowering software-defined

network switches for packet filtering // Proc. 15t International
Conference on Applied and Theoretical Computing and
Communication Technology (iCATccT). 2015. P. 837-840. doi:
10.1109/ICATCCT.2015.7456999

. Cox J.H., Clark R.J., Owen H.L. Leveraging SDN for ARP security

// Proc. IEEE SoutheastCon 2016. 2016. P. 7506644. doi:
10.1109/SECON.2016.7506644

. Shah Z., Cosgrove S. Mitigating ARP Cache Poisoning attack in

Software-Defined Networking (SDN): A survey // Electronics. 2019.
V. 8.N 10. P. 1095. doi: 10.3390/electronics8101095

. Bruschi D., Ornaghi A., Rosti E. S-ARP: A secure address resolution

protocol // Proc. 19t Annual Computer Security Applications Conference
(ACSAC). 2003. P. 66-74. doi: 10.1109/CSAC.2003.1254311

. Hou X., Jiang Z., Tian X. The detection and prevention for ARP

Spoofing based on Snort // Proc. 2010 International Conference on
Computer Application and System Modeling (ICCASM). 2010.
P. V5137-V5139. doi: 10.1109/ICCASM.2010.5619113

. Ortega A.P., Marcos X.E., Chiang L.D., Abad C.L. Preventing ARP

cache poisoning attacks: A proof of concept using OpenWrt // Proc.
6th TEEE/IFIP Latin American Network Operations and Management

Symposium (LANOMS). 2009. P.5338799. doi:
10.1109/LANOMS.2009.5338799
ABTOpBI

Japeum F'agup — crynent, Yausepcurer U'TMO, Canxr-IlerepOypr,
197101, Poccuiickas denepanus, http://orcid.org/0000-0003-1116-9410,
ghadeerdarwesh32@gmail.com

408

Hay4yHOo-TexHn4eckuii BECTHUK MHDOPMALMOHHBLIX TEXHONOMMIA, MexaHuKn n ontukn, 2021, Tom 21, N2 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 3

G. Darwesh, A.A. Vorobeva, V.M. Korzhuk

Alisa A. Vorobeva — PhD, Associate Professor, ITMO University,
Saint Petersburg, 197101, Russian Federation, 57191359167,
http://orcid.org/0000-0001-6691-6167, Alice w(@mail.ru

Viktoriia M. Korzhuk — PhD, Associate Professor, ITMO University,
Saint Petersburg, 197101, Russian Federation, 56875395200,
http://orcid.org/0000-0002-0240-9067, vmkorzhuk@itmo.ru

Received 30.03.2021
Approved after reviewing 13.04.2021
Accepted 07.06.2021

oS

NC

BopoOneBa Anca AHpeeBHa — KaHIHJIAaT TEXHUYECKHX HAYK, J10-
ueHt, Yausepcurer UTMO, Cankr-IletepOypr, 197101, Poccuiickas
Denepanust, [57191359167, http://orcid.org/0000-0001-6691-6167,
Alice_ w@mail.ru

Kop:kyk Buxkropus MuxaiijloBHA — KaHIUIAT TEXHUYECKUX HaAyK,
nouent, Yausepcurer UTMO, Cankr-IlerepOypr, 197101, Poccuiickas
Denepanyst, { 56875395200, http://orcid.org/0000-0002-0240-9067,
vmkorzhuk@itmo.ru

Cmamws nocmynuna 6 pedaxyuio 30.03.2021
Ooobpena nocne peyensuposanus 13.04.2021
Ipunama x nevamu 07.06.2021

Pa6oTta gocTynHa no nuueHsnm
Creative Commons
«Attribution-NonCommercial»

Hay4HO-TexXHU4eCcKuit BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MexaHukn 1 ontuku, 2021, Tom 21, N2 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 3

409

