НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ноябрь-декабрь 2021 Toм 21 № 6 http://ntv.ifmo.ru/ SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS November-December 2021 Vol. 21 No 6 http://ntv.ifmo.ru/en/ ISSN 2226-1494 (print) ISSN 2500-0373 (online)

ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

doi: 10.17586/2226-1494-2021-21-6-823-827 УДК 681.7.069.24

Оценка относительного шума интенсивности одномодового вертикальноизлучающего лазера с внешним резонатором на основе волоконной брэгговской решетки

Владимир Андреевич Шулепов^{1⊠}, Станислав Михайлович Аксарин², Владимир Евгеньевич Стригалев³

1,2,3 Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация

¹ shulepov vladimir@mail.ru^{\box}. https://orcid.org/0000-0003-2168-8046

² staksar@gmail.com, https://orcid.org/0000-0002-7482-3072

³ vstrglv@mail.ru, https://orcid.org/0000-0002-7151-9235

Аннотация

Предмет исследования. В работе исследована проблема стабилизации оптических параметров одномодового вертикально-излучающего лазера. Предложено решение проблемы путем формирования внешнего резонатора на основе решетки Брэгга, индуцированной в оптическое волокно с двулучепреломлением. Выполнено экспериментальное исследование вклада обратных отражений от внешнего резонатора во флуктуации интенсивности вертикально-излучающего лазера. Проведена оценка влияния фазы обратных отражений на стабильность генерации лазерного излучения при различных токах накачки. Метод. Экспериментальная оценка относительного шума интенсивности вертикально-излучающего лазера проведена в диапазоне тока накачки 1,1-6,3 мА с использованием фотоприемника с шириной полосы 8,5 МГц. Изменение фазы обратных отражений осуществлено путем смещения торца оптического волокна с шагом 100 нм. Основные результаты. Измерена величина относительного шума интенсивности вертикально-излучающего лазера с внешним резонатором длиной 30 мм на волоконной решетке Брэгга с коэффициентом отражения 95 % и шириной спектра 95 пм. Обнаружено, что стабильный режим излучения наблюдается в диапазоне токов 1,8-3,2 мА, а за пределами этого диапазона — нестабильный режим с постоянными переключениями между соседними продольными модами. Наиболее устойчивый к изменению фазы обратных отражений режим работы лазера с внешним резонатором отмечен при токе накачки 2,78 мА. Использование внешнего резонатора на волоконной решетке Брэгга позволило снизить уровень относительного шума интенсивности с $7,2 \cdot 10^{-10}$ 1/Гц до $1,5 \cdot 10^{-11}$ 1/Гц в диапазоне токов накачки 1,86-3,2 мА. Показано, что снижение флуктуаций интенсивности при использовании вертикально-излучающего лазера в оптической системе положительно сказывается на соотношении сигнал/ шум. Практическая значимость. Выполненное исследование может быть полезно в разработках, где требуется когерентный источник оптического излучения с низким уровнем амплитудного шума, в когерентной оптической связи и волоконно-оптических датчиках.

Ключевые слова

вертикально-излучающий лазер, ВИЛ, внешний резонатор, лазер с внешним резонатором, относительный шум интенсивности, амплитудный шум, волоконная брэгтовская решетка, ВБР

Благодарности

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации, госзадание № 2019-0923.

Ссылка для цитирования: Шулепов В.А., Аксарин С.М., Стригалев В.Е. Оценка относительного шума интенсивности одномодового вертикально-излучающего лазера с внешним резонатором на основе волоконной брэгговской решетки // Научно-технический вестник информационных технологий, механики и оптики. 2021. Т. 21, № 6. С. 823–827. doi: 10.17586/2226-1494-2021-21-6-823-827

[©] Шулепов В.А., Аксарин С.М., Стригалев В.Е., 2021

The relative intensity noise of a vertical-cavity surface-emitting laser with a fiber Bragg grating external cavity

Vladimir A. Shulepov^{1⊠}, Stanislav M. Aksarin², Vladimir E. Strigalev³

1,2,3 ITMO University, Saint Petersburg, 197101, Russian Federation

¹ shulepov vladimir@mail.ru[™], https://orcid.org/0000-0003-2168-8046

² staksar@gmail.com, https://orcid.org/0000-0002-7482-3072

³ vstrglv@mail.ru, https://orcid.org/0000-0002-7151-9235

Abstract

The research deals with the topical problem of stabilizing the optical parameters of a single-mode vertical-cavity surfaceemitting laser. A solution to the problem is proposed by forming an external cavity based on a Bragg grating induced into an optical polarization-maintaining fiber. In this experimental research, the authors estimated the contribution of an external cavity to the relative intensity noise of a vertical-cavity surface-emitting laser. The stability of the laser generation with a varying phase of back reflections at various pump currents is investigated. The relative intensity noise of laser radiation in the pump current range of 1.1-6.3 mA is estimated using a photodetector with a bandwidth of 8.5 MHz. The phase change of the back reflections was carried out by shifting the optical fiber end with a 100 nm step. As a result of the research, it was obtained that the vertical-cavity surface-emitting laser with such an external cavity shows a stable emission in the current range of 1.8-3.2 mA. However, one can observe instability with constant switching between adjacent longitudinal modes outside this range. The most stable laser operation mode with an external cavity against a change in the phase of back reflections is registered at a pump current of 2.78 mA. Utilizing an external cavity with the fiber Bragg grating made it possible to reduce the relative intensity noise from $7.2 \cdot 10^{-10}$ 1/Hz to $1.5 \cdot 10^{-11}$ 1/Hz in the currents range 1.86-3.2 mA. The study can be useful in applications that require an optical radiation coherent source with a low relative intensity noise level (such as coherent optical communication or fiber-optic sensors).

Keywords

vertical-cavity surface-emitting laser, VCSEL, FBG external cavity, external FBG VCSEL, fiber Bragg grating, relative intensity noise

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of Russian Federation, state assignment No. 2019-0923.

For citation: Shulepov V.A., Aksarin S.M., Strigalev V.E. The relative intensity noise of a vertical-cavity surfaceemitting laser with a fiber Bragg grating external cavity. *Scientific and Technical Journal of Information Technologies, Mechanics and Optics*, 2021, vol. 21, no. 6, pp. 823–827 (in Russian). doi: 10.17586/2226-1494-2021-21-6-823-827

Введение

Вертикально-излучающий лазер (ВИЛ, Vertical-Cavity Surface-Emitting Laser, VCSEL) представляет собой полупроводниковый лазерный диод, у которого излучение распространяется перпендикулярно плоскости чипа. Одна из особенностей структуры ВИЛ длина активной области, которая составляет несколько микрометров, а в структуре для необходимой лазерной генерации используются распределенные брэгговские отражатели (РБО). РБО выполнены в виде чередования слоев с различными показателями преломления, а коэффициент их отражения в ВИЛ составляет более 99 %. Благодаря данной структуре в резонаторе ВИЛ находится гораздо меньшее количество фотонов, чем в полупроводниковом лазере с торцевым выводом излучения. По этой причине ВИЛ имеет высокую чувствительность к обратным отражениям, несмотря на высокий коэффициент отражения верхнего зеркала структуры. При воздействии обратных отражений нарушается стабильная генерация лазерного излучения, возникают флуктуации интенсивности и частотная вариация [1-7], которые могут возникать в любой оптической схеме и вносить негативный вклад в работу всей системы. В настоящей работе предложено использовать поляризационно-чувствительную волоконную брэгговскую решетку (ВБР) в качестве внешнего резонатора ВИЛ для повышения частотной стабильности и уменьшения влияния обратных отражений на лазер. Использование ВБР, индуцированной в двулучепреломляющее волокно, позволяет расширить сферу применения лазера и использовать его в качестве источника излучения в когерентной связи или волоконно-оптических датчиках, основанных на двулучепреломляющем волокне.

В работе [8] авторами было выполнено исследование влияния длины внешнего резонатора с ВБР на спектральные характеристики ВИЛ. Обнаружено, что путем создания внешнего резонатора можно получить различные режимы работы ВИЛ при изменении коэффициента обратной связи: одночастотный режим, при котором наблюдается уменьшение вариации центральной длины волны; режим хаоса — уширение спектра излучения лазера, коллапс когерентности и спонтанные переключения между продольными модами внешнего резонатора Фабри-Перо. Получено, что путем создания внешнего резонатора длиной 30 мм с коэффициентом отражения 95 % и шириной спектра 95 пм удалось для центральной длины волны излучения повысить стабильность и уменьшить величину вариации по уровню 3σ с 8 пм до 0,4 пм при одночастотном режиме работы лазера. Настоящая работа посвящена исследованию относительного шума интенсивности ВИЛ и оценке влияния на него в случае с внешним резонатором, построенным на основе поляризационно-чувствительной ВБР.

В идеальном случае лазерный источник должен обеспечивать постоянные во времени амплитуду и

фазу излучения при работе в непрерывном режиме. На практике шум, присущий работе полупроводниковых лазеров, вызывает флуктуации амплитуды и фазы, которые могут значительно ухудшить характеристики оптической системы. Шум ограничивает разрешение во всех видах измерений, поэтому величина уровня шума в характеристике любого устройства важна [9-12], и ее необходимо оценить для ВИЛ с внешним резонатором на ВБР, а также выполнить сравнение без внешнего резонатора. В работе [13] выполнено изменение поляризации обратных отражений, поступающих на ВИЛ, и проведена оценка относительного шума интенсивности. Установлена зависимость флуктуаций интенсивности ВИЛ к фазе обратных отражений, поэтому в настоящей работе использована поляризационно-чувствительная решетка. Для спектра отражения ВБР, индуцированной в волокно с сохранением поляризации, характерно наличие двух пиков отражения, в связи с отличием длины волны брэгговского резонанса для излучения, распространяющегося по быстрой и медленной осям. Пики отражения соответствуют различным ортогональным линейным состояниям поляризации [14, 15]. В настоящей работе спектр излучения ВИЛ совпадает по длинам волн только с одним из пиков отражения ВБР, в то время как спектр отражения с ортогональным состоянием находится далеко за пределами излучения ВИЛ и влияния на него не оказывает. В работе использован одномодовый вертикально-излучающий лазер компании RayCan с центральной длиной волны излучения 1568 нм.

Метод оценки относительного шума интенсивности

Для оценки величины относительного шума интенсивности лазера собрана экспериментальная установка (рис. 1), в которой излучение ВИЛ вводится в двулучепреломляющее оптическое волокно с индуцированной в него ВБР, которая размещена на элементе Пельтье. Далее излучение поступает на фотоприемник Thorlabs PDA10CS-EC с полосой 8,5 МГц, который подключен к осциллографу Tektronix MSO 3034.

В работе использована термостабилизация ВИЛ с помощью элемента Пельтье, температура которого составляет 27 °С. Для уменьшения влияния отражений Френеля ВБР размещена на элементе Пельтье для возможности изменения силы обратной связи путем точной подстройки за счет смещения спектра отражения относительно спектра излучения ВИЛ [8]. Торец

Puc. 2. Ориентация скоса волокна *Fig. 2.* Fiber slant angle orientation

волокна имеет скос 8° по медленной оси (рис. 2) и закреплен на микропозиционере PI H.206, который обеспечивает минимальный линейный шаг 100 нм. ВБР имеет следующие параметры: центральная длина волны отражения 1568,14 нм, ширина спектра на полувысоте 95 пм и коэффициент отражения 95 %.

С помощью схемы на рис. 1 измерены шумы системы с выключенным источником, а также рассчитан относительный дробовой шум (ОДШ) [10]:

ОДШ =
$$\frac{2e\Delta f}{\rho\langle P \rangle}$$
,

где е — элементарный заряд; $\langle P \rangle$ — средняя оптическая мощность; ρ — чувствительность детектора; Δf — частотная полоса детектора.

Одновременно с измерением величины относительной интенсивности шума (RIN) выполнена оценка стабильности лазерной генерации к изменению фазы обратных отражений от внешнего резонатора. Для каждого тока лазера получен набор из 20 значений RIN при различной фазе обратных отражений, из которых выбраны максимальное и минимальное значения шума для каждого тока. Изменение фазы обратных отражений осуществлено путем смещения торца волокна по продольной координате с шагом 100 нм. В результате эксперимента получен набор максимальных и минимальных значений RIN для каждого тока (рис. 3). Также для сравнения проведена оценка величины RIN ВИЛ без внешнего резонатора. С этой целью в анизотропное оптическое волокно было введено излучение лазера и далее направлено на фотоприемник, подключенный к осциллографу. На рис. 4 представлена ватт-амперная характеристика ВИЛ в сравнении с ВИЛ с внешним резонатором на ВБР.

Результаты эксперимента

В экспериментальном варианте установки сложно выдерживать стабильное положение торца волокна относительно ВИЛ по причине того, что ВИЛ жестко зафиксирован в держателе, а оптическое волокно подводится с помощью микропозиционера. При изменении расстояния между ВИЛ и торцом волокна с ВБР фаза отраженного от решетки света меняется, что приводит к изменению выходной оптической мощности. Для случая ВИЛ с ВБР (рис. 4) видно изменение увеличения доверительного интервала, изображенного вертикальными отрезками. При жесткой фиксации оптического

Рис. 3. Сравнение RIN характеристики вертикально-излучающего лазера и вертикально-излучающего лазера с внешним резонатором на основе волоконной брэгтовской решетки.

Штриховкой обозначен нестабильный режим работы лазера, а без штриховки – стабильный режим

Fig. 3. Comparison of the relative intensity noise of the VCSEL and VCSEL with FBG. Unstable laser operation is indicated by shading, and stable mode without shading

волокна в корпусе ВИЛ стабильность выходной мощности значительно возрастает.

В результате эксперимента наблюдается стабильная работа ВИЛ с внешним резонатором в диапазоне токов накачки 1,8–3,2 мА, а за пределами диапазона — режим нестабильной генерации (рис. 3). Также в области нестабильного режима наблюдаются переключения на соседние моды и ухудшение когерентности, поэтому уровень шума и ватт-амперная характеристика не были измерены в этой области.

Рис. 4. Ватт-амперная характеристика вертикальноизлучающего лазера и вертикально-излучающего лазера с внешним резонатором на основе волоконной брэгговской решетки

Fig. 4. Output power of the VCSEL, and VCSEL with FBG as a function of the diode current

Показана возможность снижения RIN ВИЛ с 7,2·10⁻¹⁰ 1/Гц до 1,5·10⁻¹¹ 1/Гц в диапазоне токов накачки 1,86–3,2 мА путем создания внешнего резонатора на базе поляризационно-чувствительной ВБР. Наиболее стабильный к фазе обратных отражений режим достигается при величине токов накачки 2,78 мА. Однако при использовании ВБР в качестве внешнего резонатора ВИЛ наблюдается снижение оптической мощности в 3 раза.

Заключение

В работе показана возможность снижения относительного шума интенсивности вертикально-излучающего лазера путем создания внешнего резонатора длиной 30 мм на волоконной брэгговской решетке с коэффициентом отражения 95 % и шириной спектра на полувысоте 95 пм. Отраженное излучение от внешнего резонатора в зависимости от фазы обратных отражений вносит различный вклад в уровень шума интенсивности. В результате исследования получено, что наименее чувствительный к фазе обратных отражений режим работы достигается при токе 2,78 мА, при котором величина шума интенсивности составила 1,7.10-11 1/Гц. В диапазоне токов накачки вертикально-излучающего лазера 1,86-3,2 мА наблюдается снижение величины относительного шума интенсивности с 7,2.10-10 1/Гц до 1,5.10-11 1/Гц при создании внешнего резонатора на волоконной брэгговской решетке. Получено, что вертикально-излучающий лазер с внешним резонатором излучает в стабильном режиме в диапазоне токов 1,8-3,2 мА, а за его пределами наблюдается режим нестабильной генерации, периодические переключения поляризации и скачки моды.

Литература

- Iga K. Surface-emitting laser its birth and generation of new optoelectronics field // IEEE Journal on Selected Topics in Quantum Electronics. 2000. V. 6. N 6. P. 1201–1215. https://doi. org/10.1109/2944.902168
- Iga K. Vertical-cavity surface-emitting laser: its conception and evolution // Japanese Journal of Applied Physics. 2008. V. 47. N 1. P. 1–10. https://doi.org/10.1143/JJAP.47.1
- VCSELs. Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers / ed. by R. Michalzik. Springer, 2013. 560 p. https://doi.org/10.1007/978-3-642-24986-0
- Laser Physics and Technology: Proceedings of the School on Laser Physics & Technology, Indore, India, March 12–30, 2012 / ed. by P.K. Gupta, R. Khare. Springer, 2015. 345 p. https://doi. org/10.1007/978-81-322-2000-8
- Moser P. Energy-Efficient VCSELs for Optical Interconnects. Springer, 2016. 182 p. https://doi.org/10.1007/978-3-319-24067-1
- Ohtsubo J. Semiconductor Lasers. Stability, Instability and Chaos. 3rd ed. Springer, 2013. 572 p. https://doi.org/10.1007/978-3-642-30147-6
- Henry C., Kazarinov R. Instability of semiconductor lasers due to optical feedback from distant reflectors // IEEE Journal of Quantum Electronics. 1986. V. 22. N 2. P. 294–301. https://doi.org/10.1109/ JQE.1986.1072959
- Шулепов В.А., Аксарин С.М., Стригалев В.Е. Влияние длины внешнего резонатора с волоконной решеткой Брэгга на спектр излучения лазера с вертикально излучающим резонатором // Научно-технический вестник информационных технологий, механики и оптики. 2019. Т. 19. № 1. С. 15–20. https://doi. org/10.17586/2226-1494-2019-19-1-15-20
- Agrawal G.P. Noise in semiconductor lasers and its impact on optical communication systems // Proceedings of SPIE. 1991. V. 1376. P. 224–235. https://doi.org/10.1117/12.25005
- Bløtekjær K. Fundamental noise sources which limit the ultimate resolution of fiber optic sensors // Proceedings of SPIE. 1998. V. 3555. P. 1–12. https://doi.org/10.1117/12.318192
- Lefevre H.C. The Fiber-Optic Gyroscope. 2nd ed. Artech House Publishers, 2014. 416 p.
- Petermann K., Weidel E. Semiconductor laser noise in an interferometer system // IEEE Journal of Quantum Electronics. 1981. V. 17. N 7. P. 1251–1256. https://doi.org/10.1109/JQE.1981.1071262
- Yoon S., Lee D.S., Heo Y., Lee S., Ham B.S. Depolarization of external optical feedback on VCSEL and variation of relative intensity noise // Proc. of the Conference on Lasers and Electro-Optics (CLEO 2007). 2007. P. 4453461. https://doi.org/10.1109/CLEO.2007.4453461
- Siekiera A., Engelbrecht R., Neumann R., Schmauss B. Fiber Bragg gratings in polarization maintaining specialty fiber for Raman fiber lasers // Physics Procedia. 2010. V. 5. Part B. P. 671–677. https://doi. org/10.1016/j.phpro.2010.08.098
- Варжель С.В. Волоконные брэгговские решетки: учебное пособие. СПб.: Университет ИТМО, 2015. 65 р.

Авторы

Шулепов Владимир Андреевич — инженер-исследователь, Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация, 557191411190, https://orcid.org/0000-0003-2168-8046, shulepov_vladimir@mail.ru

Аксарин Станислав Михайлович — кандидат физико-математических наук, доцент, Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация, 557191417852, https://orcid.org/0000-0002-7482-3072, staksar@gmail.com

Стригалев Владимир Евгеньевич — кандидат физико-математических наук, доцент, профессор, Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация, 50 6603225596, https://orcid.org/0000-0002-7151-9235, vstrglv@mail.ru

Статья поступила в редакцию 18.09.2021 Одобрена после рецензирования 29.10.2021 Принята к печати 30.11.2021

References

- Iga K. Surface-emitting laser its birth and generation of new optoelectronics field. *IEEE Journal on Selected Topics in Quantum Electronics*, 2000, vol. 6, no. 6, pp. 1201–1215. https://doi. org/10.1109/2944.902168
- Iga K. Vertical-cavity surface-emitting laser: its conception and evolution. *Japanese Journal of Applied Physics*, 2008, vol. 47, no. 1, pp. 1–10. https://doi.org/10.1143/JJAP.47.1
- VCSELs. Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Ed. by R. Michalzik. Springer, 2013, 560 p. https://doi.org/10.1007/978-3-642-24986-0
- Laser Physics and Technology: Proceedings of the School on Laser Physics & Technology, Indore, India, March 12-30, 2012. Ed. by P.K. Gupta, R. Khare. Springer, 2015, 345 p. https://doi.org/10.1007/978-81-322-2000-8
- Moser P. Energy-Efficient VCSELs for Optical Interconnects. Springer, 2016, 182 p. https://doi.org/10.1007/978-3-319-24067-1
- Ohtsubo J. Semiconductor Lasers. Stability, Instability and Chaos. 3rd ed. Springer, 2013, 572 p. https://doi.org/10.1007/978-3-642-30147-6
- Henry C., Kazarinov R. Instability of semiconductor lasers due to optical feedback from distant reflectors. *IEEE Journal of Quantum Electronics*, 1986, vol. 22, no. 2, pp. 294–301. https://doi.org/10.1109/ JQE.1986.1072959
- Shulepov V.A., Aksarin S.M., Strigalev V.E. Effect of external cavity length with fiber bragg grating on spectrum of vertical cavity surface emitting laser. *Scientific and Technical Journal of Information Technologies, Mechanics and Optics*, 2019, vol. 19, no. 1, pp. 15–20. (in Russian). https://doi.org/10.17586/2226-1494-2019-19-1-15-20
- Agrawal G.P. Noise in semiconductor lasers and its impact on optical communication systems. *Proceedings of SPIE*, 1991, vol. 1376, pp. 224–235. https://doi.org/10.1117/12.25005
- Bløtekjær K. Fundamental noise sources which limit the ultimate resolution of fiber optic sensors. *Proceedings of SPIE*, 1998, vol. 3555, pp. 1–12. https://doi.org/10.1117/12.318192
 Lefevre H.C. *The Fiber-Optic Gyroscope*. 2nd ed. Artech House
- Lefevre H.C. *The Fiber-Optic Gyroscope*. 2nd ed. Artech House Publishers, 2014, 416 p.
- Petermann K., Weidel E. Semiconductor laser noise in an interferometer system. *IEEE Journal of Quantum Electronics*, 1981, vol. 17, no. 7, pp. 1251–1256. https://doi.org/10.1109/ JQE.1981.1071262
- Yoon S., Lee D.S., Heo Y., Lee S., Ham B.S. Depolarization of external optical feedback on VCSEL and variation of relative intensity noise. *Proc. of the Conference on Lasers and Electro-Optics (CLEO* 2007), 2007, pp. 4453461. https://doi.org/10.1109/ CLEO.2007.4453461
- Siekiera A., Engelbrecht R., Neumann R., Schmauss B. Fiber Bragg gratings in polarization maintaining specialty fiber for Raman fiber lasers. *Physics Procedia*, 2010, vol. 5, part B, pp. 671–677. https:// doi.org/10.1016/j.phpro.2010.08.098
- 15. Varzhel S.V. Fiber Bragg Gratings. St. Petersburg, ITMO University Publ., 2015, 65 p. (in Russian)

Authors

Vladimir A. Shulepov — Research Engineer, ITMO University, Saint Petersburg, 197101, Russian Federation, sc 57191411190, https://orcid. org/0000-0003-2168-8046, shulepov_vladimir@mail.ru

Stanislav M. Aksarin — PhD, Associate Professor, ITMO University, Saint Petersburg, 197101, Russian Federation, s 57191417852, https://orcid.org/0000-0002-7482-3072, staksar@gmail.com

Vladimir E. Strigalev — PhD, Associate Professor, Professor, ITMO University, Saint Petersburg, 197101, Russian Federation, <u>se</u> 6603225596, https://orcid.org/0000-0002-7151-9235, vstrglv@mail.ru

Received 18.09.2021 Approved after reviewing 29.10.2021 Accepted 30.11.2021

Работа доступна по лицензии Creative Commons «Attribution-NonCommercial»