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Abstract

In blockchain, ensuring integrity of data when updating distributed ledgers is a challenging and very fundamental
process. Most of blockchain networks use Merkle tree to verify the authenticity of data received from other peers on
the network. However, creating Merkle tree for each block in the network and composing Merkle branch for every
transaction verification request are time-consuming process requiring heavy computations. Moreover, sending these data
through the network generates a lot of traffic. Therefore, we proposed an updated mechanism that uses incremental hash
chain with probabilistic filter to verify block data, provide a proof of data integrity and efficiently update blockchain
light nodes. In this article, we prove that our model provides better performance and less required computations than
Merkle tree while maintaining the same security level.
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AHHOTAIUA

B Gnokueiine obecreueHre EI0CTHOCTU AaHHBIX IPH OOHOBICHUH PACIPEICIICHHBIX PEECTPOB SBISCTCS CIOKHBIM U
(yHIaMEHTAIFHBIM IPOLECCOM. BOIBIMHCTBO ceTell OMIOKYCHHOB IS MPOBEPKHU MOJITMHHOCTH JaHHBIX, TTOTYYESHHBIX
OT JIpyTUX OMHOPAHTOBBIX Y3JIOB B CETH, UCTIONB3YIOT AepeBo Mepkia. Co3nanue nepeBa Mepkia st KaKaoro Oioka B
CETH M COCTABJICHUE BETBH JICpeBa ISl KAXKJIOTO 3alpoca Ha MPOBEPKY TPAH3AKIIUH SBISIETCS TPYIOSMKHM IIPOIIECCOM,
TpeOyronmmM OoNbIIMX BhUUCIeHU. KpoMe TOro, oTIpaBKa 3THX JaHHBIX 110 CETH TCHEPHUPYET OONBIION TpaduK.
B pabore npemiokeH OOHOBICHHBIN MEXaHU3M, UCTIOIB3YIONIMI HHKPEMEHTHYIO XCII-IICTIOUKY C BEPOSITHOCTHBIM
(GUIBTPOM TSI TIPOBEPKH JAHHBIX OJ0Ka, MPEAOCTABICHHS J0KA3aTeIbCTRA [IEIOCTHOCTU JAHHBIX U 3()(HEKTHBHOTO
OOHOBIIEHUS JIETKUX y3710B Oiokueitna. Jloka3aHo, 4TO MpeIoKeHHasi MOJIelb obecrnednBaeT 6osee BHICOKYIO
MIPOU3BOIUTEIBHOCTh U TPeOyeT MEHbIIIEe BBIYMCICHUN, YeM AepeBO Mepkiia, COXpaHss MPH 3TOM TOT e YPOBEHb
0e30IacHOCTH.

© Maalla M.A., Bezzateev S.V., 2022
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Introduction

Blockchain is a peer-to-peer network that manages a
distributed ledger and commits to some consensus protocol.
It is considered as a promising and successful technology.
In addition to its main importance in digital payment
processing and money transfers, it has many applications
as in supply chains, digital voting, immutable data backup,
medical recordkeeping, and many other fields.

In its simple definition, blockchain is a way to
encapsulate data in blocks where these blocks are linked
through hash values to create an immutable chain of blocks
which is very fundamental concept in blockchain to keep
the data authentic without any possibility of updating or
manipulating the already added blocks to the blockchain.
Fig. 1 shows basic structure of blockchain, each block (n)
in the blockchain consists of its hash (n) and the hash of
the previous block (n — 1). In this way, every block hash
is used in the next block header which leads to creating a
chain of linked blocks.

This chain of hashes gives a way to verify the integrity
of the blockchain by recalculating the hash for a block
and comparing with the hash value in the block, then
using this value to validate the next block. Therefore, any
change in any block will lead to wrong hash value which
in turn causes the verification process to fail for all the
following blocks. This model maintains the integrity of the
blockchain and provides an immutable distributed ledger
system. In order to verify the data of blocks, which are
basically transactions, blockchain relies on Merkle tree
to verify all transactions existed in the block body using
Merkle root hash which is stored in the block header [1].

The success of the blockchain concept is connected
with the financial success of Bitcoin. Therefore, we will
consider Bitcoin as our case study to explain blockchain
structure in more detail and understand why Merkle tree is
fundamental in blockchain. Fig. 2 demonstrates Bitcoin’s
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detailed structure and how Merkle tree is constructed from
all transactions in a block to produce Merkle root which is
used to fully verify these transactions.

In Fig. 2, T is timestamp of the block which indicates
the exact moment in which the block has been mined and
validated by blockchain network; N is the nonce of the
block which is a number added by miners to meet difficulty
level restriction; V is the blockchain version number; diff is
the difficulty target for the block; and #, is the hash value
of transaction x.

We will study Merkle tree model in blockchain and
the process of verifying blocks transactions, and we will
introduce our proposed model which replaces Merkle tree
and provides a more efficient mechanism that requires less
time and fewer computations for the verification process.

Hash chain

The idea of hash chains was first proposed by
Lamport to facilitate safeguarding of one time password
schemes (OTPs) when the attacker is able to eavesdrop
on communications. Since then it has been employed in
a wide range of applications, mainly in blockchain. Fig. 3
shows its concept.

We generate a chain of hashes s/ (with j natural number
> 0) by using a hash function 4. Every element s* from the
hash chain is computed by applying hash function / on the
previous element s #-1; then we use these outputs in inverse
way [2].

One of the most famous and used type of hash chain
is binary hash chain or Merkle tree [3]. It is used in many
applications including blockchain [4—-6], health care [7, §],
financial transactions [9-11], cloud computing [12, 13]
and smart grid [14]. Many modified versions of Merkle
tree have been introduced to provide better performance.
Modified Merkle tree versions have been proposed to
provide better time and space [12, 13, 15—17]. All these

Fig. 1. Blockchain basic structure
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Fig. 2. Bitcoin’s detailed structure

$0 h(s9) = ! h(s?) = 52 h(s/) = 571 Merkle tree presenting all transactions and identifying by

Merkle root.
generate Fig. 4 shows how to construct Merkle tree for a certain
T block. Initially, all transactions inside the block are hashed
using cryptographic hash function, for instance SHA256
Fig. 3. Hash chain basic concept as in Bitcoin [1]. After that, every two consecutive hash

values are concatenated and then hashed using the same
researches show that Merkle tree plays key role in many  hash function forming their parents.

applications, and many modifications has been made to The same process is performed to the next consecutive
match the variety of these applications. hashes and repeated until it becomes a single hash value
Merkle tree construction which is called Merkle root. (If there is an odd number

In blockchain, every block contains a list of transactions.  of transactions, last transaction is doubled and its hash
Merkle tree is constructed over these transactions providing ~ is concatenated with itself). Finally, the Merkle root is
a model to verify integrity of these transactions and that  stored in the block header and distributed to all peers in
they are in correct order. Therefore, every block has itsown  blockchain network.
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Fig. 4. Construction of binary Merkle tree
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Merkle tree verification

In blockchain networks that used the concept of light
nodes which don’t store the whole blockchain locally,
they just store headers of the blocks. Therefore, they can’t
verify the authenticity of some transactions by themselves;
they have to rely on other trusted full nodes to provide the
required data to the verification process.

Fig. 5 shows the process of verification on a certain
transaction in a block. Merkle tree allows peers to verify
a specific transaction without downloading the whole
block data. When a user wants to verify a transaction, he
calculates its hash (the black box in Fig. 5), and then he
doesn’t require the whole Merkle tree, it requires only some
hash values from the tree (Merkle branch) in order to be
able to verify the integrity of the transaction, as shown in
the blue boxes in Fig. 5 for transaction Tp,.

Merkle tree analysis

In our analysis we study time complexity and space
requirements for binary Merkle tree to demonstrate the cost
of computing the Merkle tree and the required operations
to verify block data through Merkle branch.

Let’s consider a block with 7 transactions. Binary
Merkle tree for this block has the following attributes:

— The number of leaves is 7.

— The number of internal Leaves is 7'— 1.
— The total number of nodes is n =27 — 1.
— The height for n nodes is & = log,(n).

Consider Merkle tree performance and issue analysis:
1. Construction time complexity

To construct Merkle tree for n nodes, we simply
need to calculate n hash values. Therefore, the

construction time complexity is O(n).

2. Adding new node time complexity
To add a new node Merkle tree for n node, we
simply have to recalculate hashes from leaves to root on
the right side of tree since the insertion process appends
new node to the last node of the tree; so we just need

h hash value to be recalculated since /4 is the height of

the tree. Therefore, the construction time complexity
is log,(n).

3. Verification time complexity

Verification of the block integrity using Merkle
tree requires rebuilding the whole tree again by
computing the hash of every transaction in the block
and constructing Merkle tree to reach Merkle root;
then comparing the computed value with the Merkle
root value in the block header (which is considered as
reference value). If two values are equal, then the block
data is valid, otherwise, it’s not valid. This process
requires n hash calls. Therefore, the full verification’s
complexity is O(n).

We don’t need the whole Merkle tree to verify
the integrity of a certain transaction in a block; we
just need several hashes to do so. It’s enough to have
number of hashes equal to the tree height. Therefore,
the verification time complexity is O(4) which is
O(logy(n)).

4. Space complexity

To store Merkle tree for n nodes, we simply need to
store n hash values. Therefore, the space complexity is
O(n), which is considered a large space.

5. Merkle tree issues

There are some disadvantages in Merkle tree which
make it not optimal simulation for blockchain:

— The cost of Merkle tree construction is high, especially
when we have a lot of transactions in block (in average,
1626 transactions per block in Bitcoin process during
October 2021)!.

— Blockchain networks don’t store Merkle tree. Therefore,
full nodes have to construct it and provide Merkle
branch every time transaction verification is requested.

I Blockchain Explorer — Search the Blockchain | BTC | ETH
| BCH, October 2021. https://www.blockchain.com/charts/n-
transactions-per-block (accessed: 01.11.2021).
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Fig. 5. Verification on transaction “7”
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Moreover, it’s time consuming to rebuild it again for

every request.

— It creates unnecessary network traffic because it’s
required to transfer Merkle branch to verify one
transaction. L network accesses are required to verify
one block transactions. If we assume that m users are
requesting the verification the same block, then it causes
enormous number of network access. Therefore, the
complexity of verifying one block (one Merkle tree) is
O(mLlog,n) that affects network performance.

As a result, Merkle tree has many significant features
that make it fundamental for blockchain. However, it has
costly data structure and it needs a lot of resources to be
constructed. It doesn’t require the whole hash tree to be
downloaded in order to verify a block of data, instead
it requires just a few hash values (Merkle branch) to be
able to verify data authenticity, but still, it takes time and
resources and needs computing these hashes and also cause
unnecessary network traffic. Therefore, we need more
efficient mechanism to verify data integrity and authenticity
which require less computing and time complexity.

Probabilistic filter

Probabilistic filters are high-speed, space-efficient data
structures that support approximate membership tests with
a one-sided error. These filters can claim that a given entry
is definitely not represented in a set of entries or might
be represented in the set. Therefore, negative responses
are conclusive, whereas positive responses incur a small
false-positive probability (it might sometimes indicate that
an entry is a member of the represented set although it is
not). One of the most famous filters is Bloom filter which
is represented with m bit array.

Some of Bloom filter properties are:

— It allows for membership check in constant space and
time.

— Very infrequently it will give a false-positive answer,
implies it will say YES if the answer is NO (probably
in the set).

— It will never give false-negative answer, implies it will
never say NO ifthe answer is YES (definitely not in the set).

— Basic Bloom filter supports two operations: test and
add.

— It has constant time complexity for both adding items
and asking whether a key is present or not.

— You can’t remove an item from a Bloom filter.

— It also requires much less space compared to the number
of items you need to store and check.

We can insert an element in this filter by inserting 1
into k slots in the bit array by & hash functions. When we
want to check if a certain element is member in this filter
or not, we must check all £ slots if they have 1 value; if
not, it means that this element is definitely not a member
of the filter.

Fig. 6 shows an example of a Bloom filter with
m = 18 bit array and k = 3 hash functions, representing the
set {x, y, z}. The colored arrows show the positions in the
bit array that each set element is mapped to. The element w
is not in the set {x, y, z} because it hashes to one bit-array
position containing 0.

x.y, 2}

[o[tfJoJ1Jtf1JoJoJoJofJoJtJof1]OoJO[L]0O

w

Fig. 6. Bloom filter presentation

Let f'is the false-positive rate; n is the number of
inserted items; & is the number of hash functions; and m
is the number of bits in the filter. The following equation
determines the false-positive rate as a function of other
three parameters [18].

r=(1-en. (1)

The following equation determines the optimal number
of hash functions:

k

opt

m
~In2. )

The following equation determines the array size in bits
for a given input (n) and desired false-positive rate:

nlnf

(In2)*

We should carefully choose these parameters to
optimize the desired Bloom filter. We can get a very low
false-positive rate that can be neglected.

1. Construction
Building cost for a Bloom filter for a block with
L transactions is O(Lk), we can consider O(k) = O(1)
because £ is nearly constant.
2. Verification
Verifying cost for a Bloom filter for a transaction in
a block is O(k), because we only need to check £ bits
in an array.
3. Space
We just need m bits to store a Bloom filter.

3)

Incremental hash chain

We proposed to use incremental hash chain to replace
Merkle tree by providing more efficient approach to verify
integrity of data which consume less time and computation
power than Merkle tree.

Construction

Block is consisted of many transactions, and in order to
construct an incremental hash chain for these transactions
in order to verify that these transactions are correct and in
the same order, we will start incrementally building our
hash chain from the first transaction until the last one.

Let a block has L transactions; 7, presents the
transaction with index i; H(7;) is the hash value of
transaction 7;. To calculate the hash value for 7, we need
the transaction concatenated with the hash of previous
transaction (except the first transaction), and it’s given by
equation

H(T)); i=1

HO =\ merymys 1 <i<Lf @)
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The last hash value of equation (4) is the root of the
incremental hash value; we call it Incremental Hash Root
(INR). This value will be stored in the block header and
transmitted to all nodes to be used in the verification
process.

Definition 1. THR for a certain block contains L
transactions in the incremental hash value of the last
transaction of that block, and it’s given by the following
equation

IHR = H(T)).

Equation (4) demonstrates that all transactions are
linked together incrementally, and any change to the data
or order of transactions will lead to a wrong IHR.

Total hash function calls in a block contain L
transactions, i.e. exactly L calls. Therefore, construction
time complexity is O(L), while we need 2L—1 calls in
binary Merkle tree. Our approach downsizes computation
time to half, so it uses more efficient mechanism and saves
power and time.

Verification

In our proposed approach we can verify the block data
by recomputing IHR again. This process provides overall
verification for block data. But when it comes to verify a
single transaction in a block, we cannot use our approach
to achieve that. Our approach is missing one significant
feature that Merkle tree provides, it has partial verification.
Therefore, we integrate incremental hash with Bloom filter
to achieve this feature.

Incremental Hash Chain Bloom Filter-based

Merkle tree is costly data structure, and it requires a lot
of computations when a blockchain requests a transaction
in a block from a full node. The full node should build a
Merkle tree for this block and send the transaction with the
Merkle branch to the light node. Moreover, this process
will be repeated for every single transaction in a block
that required a lot of computations and network traffic. We
proposed a new mechanism using Incremental Hash Chain
Bloom filter-based to verify transactions.

Miner node side

Mining nodes are only responsible for creating blocks
to add to the blockchain, let’s consider a miner builds
a new block containing L transactions. He starts with
computing hash values for the transactions using equation
(4) to generate IHR to be added to the block header. In
our approach, it’s required to build the Bloom filter for
this block by inserting the hash values of the transactions
into the filter array, then to compute the hash value of the
constructed Bloom filter (let’s call this value BFH) and to
add the resulting hash value to the block header to be used
later by light nodes in the verification process for checking
the integrity of received Bloom filter from a full node.

Full node side

In our approach, block header contains IHR and BFH.
When a full node receives a new block from a miner, it
will recompute the hash values for all transactions in the
block to verify IHR value in the block header; then it will
construct Bloom filter for the block and compute hash value
for it and compare it with BFH value existing in the block

header; and at last recompute the block hash to verify the
block data.

When a light node requests a transaction, the full node
sends the transaction data, the previous transaction hash,
and the Bloom filter.

Light node side

A light node requests a transaction and receives
the response from a full node. The response contains:
transaction data, previous transaction hash and Bloom
filter. The light node computes the hash for the Bloom
filter and compares it with the BFH in the block header. If
they don’t match, the node rejects the transaction; if they
match, then the node computes the hash of the transaction
using equation (4) and gets the transaction hash. After that
it checks if this hash value exists in the received filter: if it
exists — the transaction is valid and verified, else the light
node rejects the transaction.

Considerations

The main problem of our approach is that we rely on
Probabilistic filter, which doesn’t give us a deterministic
result; but if we build our filter carefully with choosing the
perfect parameters for the filter, we can get a very small
false-positive probability which we can neglect.

By using the equations (1), (2) and (3), let us consider
Bitcoin where in October 20211, in average, there were
1626 transactions per block. As for Ethereum, there were
about 74 transactions in a block (during 2021). Let’s say
we want to present 2000 transaction in a Bloom filter
(m =2000), and we choose the size of the filter as 10 Kbit
(n =10 Kbit) and, applying the previous equations, we can
find the results as shown in Fig. 7, a.

a
False positive probability vs Filter size
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Fig. 7. Probability of false alarm depending on: filter size (a);
the number of hash functions (b)

I Blockchain Explorer — Search the Blockchain | BTC | ETH
| BCH, October 2021. https://www.blockchain.com/charts/n-
transactions-per-block (accessed: 01.11.2021).
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Table. Comparison between binary Merkle tree and our proposed incremental hash chain model

Feature Binary Merkle tree Our approach
Construction cost O(L) for IHR
O(KL) for Bloom filter
Verification of a transaction O(log,n) O(K)
Verification of all transactions O(nlog,n) O(L)
Space cost O(L)

The false-positive probability is p = 0.000000982 using
8 hash functions (k = 8), which is considered as neglected
value.

We can see from (Fig. 7, a, b) that we can tune the
number of hash functions used in Bloom filter and tune
the size of the filter according to the size of the input, and
we can get very small value for p which is neglected; also
we can have dependence on the Bloom filter to verify the
partial verification for a transaction in a block.

Analysis

Our proposed solution is much faster than binary
Merkle tree as demonstrated in Table, it downsizes required
computation resources to half. We need 2.—1 hash calls
to construct binary Merkle tree while we only need L
calls in our solution; it saves more time and computing
power. When it comes to verification process, our approach
provides better performance in overall verification when
we want to verify block data integrity. Moreover, when
it comes to partial verification, our approach gives better
performance using O(K) calls to verify a single transaction
using Bloom filter.

The big difference in our approach is that we need to
build Bloom filter and send it to the light nodes which
require transaction verification from this block. But this
difficulty replaces the need to compute Merkle branch for
every transaction request which is a very cost operation
to do. But in our approach we just need to build the filter
once and use it with all light nodes which gives better
performance and computing size when we are dealing with
blocks having big number of transactions (thousands), like
Bitcoin does.

Collision resistance probability

One of the most import properties in any cryptographic
hash mechanism is its resistance to collision which means
getting the same hash value for two different inputs. When
we want to choose a suitable and secure hash function to
be used in our solution, we should consider its collision
resistance. Let H is a hash function with m bits output.

According to Birthday Paradox [19, 20], the expected hash
collision with 50 % probability is accrued when we reach
\27 outputs, for example. If we consider SHA256, since it
is used in Bitcoin, we face collision with 50 % probability
after getting 2128 outputs. This means that after getting 2128
hash values, we would start to get collisions in our system
with 50 % probability. Therefore, we should consider the
blockchain hash usage rate to be able to predict the required
m-bit output hash function.

By studying Bitcoin as the first and the most used
blockchain network, we find that in average Bitcoin minors
generate = 291 hashes per year!, so we need 237 years with
the same computing platform and power consumption.
Therefore, we can safely consider that SHA256 is suitable
to our system.

Disadvantage

In case there is a false-positive value in the Bloom filter,
we cannot figure out where is the problem. In that case we
have to request the whole block data (all transactions) from
a full node, recompute the IHR and compare it with the
IHR in the block header to check the integrity of the whole
block data. All that requires a lot of computations and gives
a bad performance. However, many recent researches prove
that the false-positive probability is negligible [21], and
a Bloom filter research with free zones is required [22].
Therefore, we can say that the probability is negligible.

Conclusion

In this article, we introduce a new approach to replace
binary Merkle tree in blockchain by proposing more
efficient model using incremental hash chain Bloom filter-
based. Our solution consumes less computing power than
binary Merkle tree. Moreover, it needs less time and space
to construct the model and verify the integrity of blockchain
data. We compare our mode with binary Merkle tree and
prove that our model is more efficient in every aspect.

I Blockchain Explorer — Search the Blockchain | BTC | ETH
| BCH, October 2021. https://www.blockchain.com/charts/n-
transactions-per-block (accessed: 01.11.2021).
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