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Abstract

Identifying community structures within network dynamics is important for analysing the latent structure of the network,
understanding the functions of the network, predicting the evolution of the network as well as detecting unusual
events of the network. From various perspectives, a diversity of approaches towards dynamic community detection
has been advised. However, owing to the difficulty in parameter adjustment, high temporal complexity and detection
accuracy is diminishing as time slice rises; and recognizing the community composition in dynamic networks gets
extremely complex. The basic models, principles, qualities, and techniques of latent factor models, as well as their
various modifications, generalizations and extensions, are summed up systematically in this study which focuses on
both theoretical and experimental research into latent factor models across the latest ten years. Latent factor model
like non-negative matrix factorization is considered one of the most successful models for community identification
which aims to uncover distributed lower dimension representation so as to reveal community node membership. These
models are mostly centred on reconstructing the network from node representations while requiring the representation
to have special desirable qualities (non-negativity). The purpose of this work is to provide an experimental as well
as theoretical comparative analysis of the latent factor approaches employed to detect communities within dynamic
networks. Parallelly we have devised the generic and improved non-negative matrix factorization-based model which
will help in producing robust community detection results in dynamic networks. The results have been calculated from
the experiments done in Python. Moreover our models methodology focuses on information dynamics so as to quantify
the information propagation among the involved nodes unlike existing methods that considers networks first-order
topological information described by its adjacency matrix without considering the information propagation between
the nodes. In addition, this paper intends to create a unified, state of the art framework meant for non-negative matrix
factorization conception which could be useful for future study.

Keywords
community detection, principal component analysis, orthogonality, non-negative matrix factorization, singular value
decomposition, social network analysis

For citation: Bashir S., Chachoo M.A. An enforced non-negative matrix factorization based approach towards
community detection in dynamic networks. Scientific and Technical Journal of Information Technologies, Mechanics
and Optics, 2022, vol. 22, no. 5, pp. 941-950. doi: 10.17586/2226-1494-2022-22-5-941-950

VJIK 51-78
IMoaxon k oOHApY:KEHHIO COO0IIECTBA B JUHAMHYECKHUX CETAX,
OCHOBAHHBIH HA NPUHYAUTEJIbHON HEOTPHUATEJIbHON MATPUYHOH (PAKTOPU3ALMH
Bamup apusa!®™, Axmax Mancyp Yauy?

L2 Yuusepceurer Kammupa, Cpunarap, 190006, Muaus

! imshafia@gmail.com<, https://orcid.org/0000-0002-5570-967X
2 manzoor@kashmiruniversity.ac.in, https://orcid.org/0000-0001-6702-6633

AHHOTAIUA
BerIsiBIIeHHE CTPYKTYp COOOIIECTBA B CETEBOM TMHAMUKE BAKHO JUTS aHAJTU3a CETH OTHOCUTEIIBHO: CKPBITOH CTPYKTYPHI,
NOHUMaHUs (YHKIMH, TPOTHO3UPOBAHUS Pa3BUTHsI, 0OHAPYKEHNS HEOOBIYHBIX COOBITHIA. B pacCMOTPEHHBIX HAayUHBIX

© Bashir S., Chachoo M.A., 2022

Hay4HO-TexXHU4eCcKuit BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MEXaHUKK 1 onTukun, 2022, Tom 22, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no 5

941


http://ntv.ifmo.ru/
http://ntv.ifmo.ru/en/
mailto:imshafia@gmail.com
https://orcid.org/0000-0002-5570-967X
mailto:manzoor@kashmiruniversity.ac.in
https://orcid.org/0000-0001-6702-6633
mailto:imshafia@gmail.com
https://orcid.org/0000-0002-5570-967X
mailto:manzoor@kashmiruniversity.ac.in
https://orcid.org/0000-0001-6702-6633

An enforced non-negative matrix factorization based approach towards community detection in dynamic networks

UCCIICIOBAaHUSIX PEKOMEH/YETCs UCIIONIB30BATh Pa3JINYHbIC TTOAXO0AB! K JUHAMUYECKOMY OOHAPYXEHUIO COOOIIecTBa.
OnHaKo M3-3a CIOKHOCTH HACTPOIKM MapamMeTpoOB, BHICOKOH BPEMEHHOW CIOKHOCTH U CHUIKCHHS TOUYHOCTH
oOHapy»XKeHHs 110 Mepe yBENNUeHHs BPEMEHHOTO MHTEpBaja paclo3HaBaHWE COCTaBa COOOIIECTBA B JUHAMUYECKUX
CeTSIX yCIOXKHACTCS. PacCMOTpEHBI OCHOBHBIE CXEMBI, TIPUHIIUIIBI, CBOHCTBA M METO/IBI MOIEJNIeH JTATEHTHBIX (JaKTOPOB,
a TaKKe X CHCTEMHBIC MOTU(HUKAIINH, 00001eHNs U pacmupenns. OCHOBHOE BHUMaHUE YAEICHO TEOPETHUECKUM H
9KCIIEPHMEHTAIILHBIM HCCIIEIOBAHIAM MOZIENEH JTaTeHTHBIX (PaKTOpOB 3a mocnequue aecsaThb eT. CKpoITas GpakTopHas
MOJIeIIb — HEOTPHIaTeIbHAs MATPUIHAS (haKTOPU3ALIHSI, CAUTACTCS OHOM M3 HanOoJIee YCTISNIHBIX 1T HACHTH(HKAIIIH
coo0lIecTBa U HANPaBIeHa Ha PACKPBITHE PACHPEIEICHHOIO NPeACTaBIeH s 0olee HU3KOr0 N3MEPEHHUs C L0
ONpeIeNICHHs YWICHCTBA B y3J1e coobmiecTBa. Moziel OCHOBaHbI Ha PEKOHCTPYKIIMU CETH U3 MPEACTaBICHUIT Y3JI0B IpU
YCJIOBHH, YTOOBI Ipe/IcTaBIeHHE 001110 0COOBIMH KeJIaTeIbHBIMU KaueCTBaMH (HAIPUMeEp, He OTPULIATEIbHOCTBIO).
Lenb paboThl — MOIYYUTh SKCHEPUMEHTATIBHBIN M TEOPETUUECKUI CPABHUTENbHBIE aHAIU3BI TIOJIXOJ0B CO CKPBITHIM
(haxTOpOM, UCTIONB3YEMBIX JUIsI OOHAPYKEHUS COOOIECTB B AMHAMUYECKHX ceTsAX. Pa3paborana obmas u yaydieHHas
HEOTPHIATEIbHbIE MAaTPUUHBIE MOJEIH, OCHOBAHHBIC HA (JAKTOPU3AIMH AT MOTYICHUS HANEKHBIX Pe3yIbTaToB
oOHapy»KeHHs COOOIIEeCTBa B TMHAMUIECKHX CeTsX. [lomydeHHble pe3yabTaThl PACCIUTAHBI HA OCHOBE SKCIIEPHMEHTOB,
MIPOBE/IEHHBIX HA sI3bIKe MporpammupoBanus Python. Ilpemnoxennas mertomonorust Mojeneil cpoxycupoBaHa Ha
JMHAMUKe HHPOPMALUH, ISl KOJIMUYECTBEHHON OLEHKH pacHpOoCTpaHeHHs HHPOPMALMH MEXIY 33/1ei{CTBOBAaHHBIMU
y3namu. OTinyne npeuIoKeHHON MOJIENTH OT CYIIECTBYIOMINX COCTOMT B MONYYSHUH TOMOJIOTMYECKOH HH(pOpMaIn
CEeTH MEepBOTO MOPSI/IKA, OMUCHIBAEMON ee MaTpHIeil CMEXHOCTH, 0e3 yueTa pacupocTpaHeHHs: HHPOPMALMN MEKTy
y3namu. [Ipeioxkeno co3aanue e1MHON COBPEMEHHOM CTPYKTYPbI, IPEIHA3HAYEHHON /11l KOHLIETIMY HEOTPULIATENIbHON
MaTpUYHOI (haKTOPHU3AIINH, KOTOPAsk MOXKET OBITh MONe3Ha AT OyTyIIUX HCCIEIOBAHHHN.

KiwueBble ciioBa
06Hapy>x<eH1/Ie COO6IJ.[eCTBa, AHAJIN3 TJIaBHBIX KOMIIOHCHT, OPTOTOHAJIBbHOCTH, HECOTPULATCIIbPHAA MaTpU4YHaA
q)aKTOpI/I?)aHI/IH, Pa3JI0KCHUEC IO CUHTYJIIPHBIM YUCJIaM, aHAJIU3 COUAJIbHbIX cereit

Ceblaka s nutupoanus: bamup Il., Yaay M.A. [loaxox k o0HapyXeHHIO cOO0MECTBa B TUHAMUYECKHIX
CeTsIX, OCHOBAHHBIIM HA MPHHYIUTEIBHON HEOTPHIATEIBHON MaTpUIHON (hakTopusauu // HaydaHo-TexHnue cKuit
BECTHHK MH()OPMAIMOHHBIX TEXHOJIOTHH, MexaHuku u ontuku. 2022. T. 22, Ne 5. C. 941-950 (ua anr. s3.). doi:

10.17586/2226-1494-2022-22-5-941-950

Introduction

Community structure regarded as an essential
characteristic of dynamic networks reveals as well as
exposes the underlying connections. There were more
and more studies recently in order to develop methods
for community detection. These studies, on the other
hand, were mostly focused on static networks; hence they
were unable to detect dynamic communities in complex
networks. The construction of the network in real-world
is however dynamic. The structure of community for
most networks, on the other hand, is constantly changing
throughout time. Existing static approaches for community
detection split the community depend on the network static
topology and ignore the interaction between network
structures over numerous snapshots. Owing to their high-
level potentiality for comprehending social phenomena
across time, dynamic community identification in
complex networks has recently gotten lots of attention
and turn out to be a popular study area. Social networks,
protein-protein connection networks and person to person
communication networks are all examples of temporal
networks in the real world. Within network dynamics,
temporal network analysis can uncover potential rules
and essential properties. As a result, developing ways to
identify communities in dynamic networks has become
progressively more crucial. The uncertainty of the solutions
is one of the most significant challenges in recognizing
temporal communities. As a result, we can’t tell if the
change in community discovery is due to the community’s
evolution or the algorithm instability. A variety of strategies
have been offered to address this issue, with the ultimate
goal of smoothing the community evolution.

Our goal to develop a more robust Dynamic Community
Detection (DCD) methodology was achieved by focusing
on information dynamics so as to quantify the information
propagation among the involved nodes. This study also
focussed on the quantitative (statistical) analysis of the
latent factor model based approaches (Non-Negative Matrix
Factorization (NMF)) related to community detection in
dynamic networks so that the user may obtain a general
idea of how the network is organized and a few underlying
experiences of the network structure. Moreover, this
study is organized in the way where introductory section
addresses the fundamentals required for reviewing the DCD
followed by literary section which addresses the findings
and recent research in SNA (social network analysis) related
to detecting dynamic communities. Next section represents
the generic and improved NMF based methodology to
uncover the dynamic communities. Empirical results have
been shown under the result section. Evaluation section
evaluates the framework against the two important existing
NMF based approaches: Community Detection with
Community Structure and Node Attribute (CDCN) and
DPNM (NMF incorporated density peak clustering). Next
section (Applications) provides the utilization of detecting
communities. Lastly, we summarize and conclude the study
with some potential future guidelines.

Literature Review

The recognition of a networks community division
reflects nodes tendency to form clusters based on their
resemblance and hence create communities. Various real-
world networks show that community structure exists
[1]. Community analysis is necessary to understand the
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network structural and functional features. The structural
feature have been applied to a variety of fields, like viral
marketing, epidemic modelling, and detecting important
vertices in power systems wherein their failure could create
a cascading collapse.

In order to cite only and not to overemphasise the
significance of community identification and it’s working
in the perspective of this study, community identification
enables the recognition of few node groupings bearing
the intra-group connections denser, implying that it works
by recognizing those groups of people whose interaction
among them takes place frequently. The detection of
communities will aid in identifying the influential nodes
as well as their subordinates in real-time. This is one of the
rationales wherefore community identification techniques
are being developed, tested, and enhanced.

A large number of algorithms in the literature
focused on vertices characteristics rather than the link
characteristics. For the challenge of dynamic community
discovery in evolving networks, there aren’t many
favourable approaches. However, latent factor models, like
NMF models, are one of the most favourable approaches.
By rebuilding the original data, matrix factorization is an
excellent tool in favour of representation learning. The
constraints forced on the base matrix and the coding matrix
differs among a variety of matrix factorization techniques.
The usage of non-negativity restrictions (constraints)
distinguishes NMF from other types of matrix factorization.
Additional restrictions can be imposed on NMF such as
orthogonality or sparseness that preserves the topological
features [2]. Despite these additional constraints, NMF
differs from the other techniques of matrix factorization
like PCA (principal component analysis) and SVD (singular
value decomposition) because to its non-negativity feature.
Because they only allow additive combinations but not
subtractive combinations, these constraints result in a
parts-based representation. NMF approaches use every
node as a network dimension, and consider community
detection to be the challenge of identifying a low-
dimensional network representation. However, they do
not guarantee that the representation obtained matches
with communities, necessitating some heuristic control to
increase interpretability.

NMF, which is popularly utilised in pattern recognition
and information retrieval, have recently been employed
to resolve the challenge of community discovery [3, 4].
In terms of DCD several research, workers [5—7] had
included NMF within a temporal framework, resulting in a
plethora of useful DCD models. Wang et al. [4] proposed
a model, namely DCD based on NMF, where the transition
matrix of community membership was included with the
notion of temporal cost so as to smooth out the community
structure alterations. Whereas Yang et al. [7] developed
a DCD approach based on NMF that takes node strength
into account. Their primary premise was that the node
pairs bearing stronger connections have a greater chance
of belonging to the same community. FacetNet [8] is a
well-known method for community analysis together with
their evolution considering network dynamics. It combines
communities altogether with their evolutions in a unified
manner using NMF which differs from standard methods

wherein two-stage processes are treated asynchronously.
The FacetNet technique, on the other hand, necessitates
prior information and the specification of the number of
the community partitions. In many cases, the number of
community partitions is difficult to predict in advance. To
get over this matter, Lu et al. [9] employed singular value
decomposition so as to automatically uncover the number
of community partitions. Though the k is representing
the number of communities may be automatically
collected and a higher grade of community detection
can be achieved, the time complexity is considerable.
Despite the fact that studies [10, 11] suggest that NMF
is the best method for learning object components, it
fails to capture the geometrical data structure space that
is crucial for clustering. Graph regularisation approach
may extract the geometric data structure, according to
manifold learning theory and spectral graph theory [12].
Furthermore, the geometric network structure will not get
changed significantly in a short period of time if temporal
smoothness is assumed. As a result, we suggest that graph
regularisation is to be used to simulate the temporal cost
function which will be intuitively beneficial. Yu et al.
[13] followed a two-stage approach where community
detection and community evolution were studied separately,
hence was not optimal. Though the authors [14] suggested
the efficient approach for community detection yet their
approach was very specific to criminal activities.

Ma & Dong [15] presented 2 frameworks for
Evolutionary Non-negative Matrix Factorization (ENMF)
and demonstrated that evolutionary spectral clustering,
ENMF and evolutionary modularity density are all
comparable. They also introduced sE-NMF, the semi-
supervised technique that adds a priori knowledge to
ENMF. Sun et al. [16] developed a model-DCD that was
comparable to Wang’s [5]. The distinction between them,
though, is the cost of a snapshot. As a cost function of the
snapshot, the carlier adopted standard NMF, while latter
used the symmetric NMF (SNMF). In order to achieve
better interpretability, Yuan & Liu [17] suggested a model-
DCD with node weight matrix and the triple NMF.

Internal connections were used as the graph
regularisation requirement by Wang et al. [18] who
used the triple NMF with the purpose of increasing the
functioning of community identification into networks
of bipartite. Matrix factorization accurately depicts the
network community structure and guarantees the significant
interpretation of the community regardless of the topology
of the network. NMF avoids the limitations of modularity
optimization approaches [19], like resolution of limit
[20], in addition to quantifying how robustly every node
contributes to its community. Tokala et al. [21] employed
NMF along with the cost function namely I-divergence
to present 2 techniques for undirected and directed
networks, respectively. Jin et al. [22] employed NMF to
construct the model which is generative, treating this as the
problem of optimization to identify the linkage formation
of communities, grounded upon the relevance of every
node while establishing linkage to every community. Even
though the study [23] presented a comparative analysis of
the already existing approaches and algorithms employed
to detect online communities in social networks, yet the
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community extraction and community evolution were
treated asynchronously in most of the approaches which
doesn’t make sense in the real environment.

The studies [24, 25] also approached to model
community detection with a significant improvement
from the past studies. Wang et al. [24], in contrast to the
above research studies, employed graph regularisation to
capture classical geometric network structure information.
They created an efficient iterative algorithm grounded
on multiplicative updating principles as well as the proof
method. Despite the fact that their method exceeds the
competition still in respect of overall functioning, the
enhancement on several networks is insignificant. As a
result of this vast research review, it is clear that additional
research is required and expected so as to advance this
field of study.

Methodology

Past works followed a two-stage approach where
community detection and community evolution were
studied separately. However, our framework follows a more
advanced approach by studying the community detection
and evolution simultaneously as described below.

By creating a distinctive network where all snapshot
nodes are all instances of all nodes, and edges can be
regular edges within snapshots or a special sort of edge
that connects nodes between snapshots. Then the NMF is
made to run on this large network to uncover communities
as illustrated in Fig. 1.

Our contribution towards this study mainly consists of
the following steps:

— an effective approach to calculate information
dynamics among the nodes in a targeted network;

— an integrated framework is proposed where
number of communities adopted by NMF is calculated
automatically based on the information flow score among
nodes;

— a model that merely depends on the targeted
network topology to identify true communities is aimed
and formalized.

Our framework that uses social networks to recognize
active communities has four main interconnected phases
(stages) as described below.

Stage 1. We use BFS (Breadth First Search) first
to sample a graph around an initial seed node; then the
adjacency matrix A is constructed based on the targeted
subnetwork having ones depicting links among network
nodes and zeroes depicting unknowns like:

A;={11ifiandj are adjacent to each other; otherwise 0.(1)

Stage 2. Here the similarity matrix B based on
contact strength among nodes of matrix A is computed
first, where contact strength represents the degree of
closeness among nodes of a network. Because the triangle
structure may better characterise the tightness among the
nodes, we employed triangles to formalise the contact
strength definition. It is computed using the following
formula:

Nu) N N
cs,, - M@ N NG)
Tu

2

where 7u is the number of triangles of vertex u, and the
intersection between N(u) and N(v) is the number of
triangles common to node u and node v.

So the strategy is based on the fact that strong ties play
a major part in community formation and information
diffusion. In the network having »n nodes, the similarity of
every node pair according to the above described contact
strength formula is computed first and therefore n % n form
of similarity matrix as B = {s;;} is obtained, wherein an
element s;; indicate the contact strength closeness between
i and j nodes.

Stage 3. Here we made an attempt to train our
framework to calculate the number of communities based
on the node information flow. The information about a v
node over ¢ time is calculated as:

L1y = Loy T 2y € Ny (CSy)- 3)

Wherein /,, describes the information of a v node at
t time, and second part of the expression represents the
information which is gained from its neighbours. As may
be seen, information of v node at time ¢ + 1 involves the
information over time ¢ plus the information gained from
its neighbours at time ¢ + 1. With the time evolution, the
propagation of information inclines to zero. Ultimately,
the network information will achieve a state of equilibrium
which blocks the further information interaction.

Stage 4. Then NMF is exploited using the similarity
matrix B together with the calculated information flow
thus uncovering the communities. NMF uncovers the
inherent network community composition and improves
interpretability and compression because of its “sparse”
and “parts based” representation with the solely additive
constraint or non-negativity. NMF reduces the matrix
B € R™*n into two nonnegative matrices like V € Rm*k
and U € RF7, such that B = VU. Given an information
node B matrix, we intend to acquire U the matrix of node
membership using NMF as follows:

min
U, V[B-VU|% “)
StU>0.

After obtaining the clusters around the seed nodes, the
quality scores of each node are computed and the node
having highest score in every cluster is selected as the
high quality seed. We illustrate the quality-score of a node

v(OSy) as:
0S8y = Sim(YG(v), YG(vs)) +
N Xu € Nw)Sim(YG(u), YG(v))
INO)

)

where N(v) is the neighbour set of v; YG(v) is the vector
embedding of v node on G; and Sim represents the cosine
similarity.
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Moreover we summarize our frameworks work flow
in a flow chart (Fig. 1). Four main tasks employed by our
methodology discussed above as well are further elaborated
as follows:

1. Initialization — where adjacency matrix A is
constructed based on targeted network having ones
depicting links among network nodes and zeroes
depicting unknowns. Then initialization of secondary
data structures takes place accordingly.

2. Pre-processing — where matrix B is constructed based
on the information statistics of nodes considering matrix
A as a base matrix.

3. Training — where our framework is made to learn the
no. of communities based on the node information flow.

4. Detecting — where finally the associations between the
nodes and the communities are attained via NMF over
learnt latent factor representations of the nodes of the
network.

The process is repeated until all the snapshots are
visited. Once it is done with all the snapshots a sequence
of multiple communities are obtained.

Adopt BFS (with depth at 3) using seed
node to get first-order, second-order and
third-order nodes

Initialize A according to the targeted
sampled graph by formula (1)

Calculate Information flow score (IFS) of
each node with respect to its neighbors by
formulae (2), (3)

Reconstruction of A according to the IFS
statistics resulting in B

l

Adopt NMF to identify the cluster to
which each node belongs by rule (4)

Compute the quality score of each seed
so as to record the high quality seed for
the next snapshot by formula (5)

!

The sequence of the set of multiple
communities for a high quality seed

No

Whether all snapshots visited

i Yes

End

Fig. 1. Work flow of our proposed framework

algorithm
—

Fig. 2. A simple illustration of the community detection in our
framework

Our framework is capable of uncovering the connected
components in a graph without explicitly specifying
the number and size of communities as was required in
previous studies [8, 15]. Moreover the approach is scalable
enough to accommodate very large networks as often
observed in real data. Fig. 2. shows how communities
are identified in our framework — blue colored nodes
represent community 1 and red colored nodes represent
community 2.

Empirical Results

Using three real-world networks as discussed below, the
effectiveness of the existing community detection methods
based NMF was examined in this study.

Simulated Data

We used the combination of small and large 4 real-
world networks as discussed and demonstrated below in
order to validate the effectiveness of our model.

In 1970s, 34 fellows from a club-karate at an American
university formed a friendship social network known as
the Zachary karate club [26]. The network was broken into
two sets of friendship due to a disagreement involving the
club manager along with the trainer about the charge of
training karate.

In the year 2000, American Football College became
a games network among Division-I Colleges (teams).
Conferences are made up of colleges, with each conference
serving as a ground-truth community. The nodes (115)
represent Colleges (teams) whereas edges (616) denote
games played among teams [1].

Dolphin is a group of 62 dolphins that were spotted in
New Zealand Doubtful Sound between 1994 and 2001.
Two dolphins that were observed together “more often
than the predicted probability” are connected by an edge.
The network was separated into two primary communities
(partition (a) contains 1-20 nodes and partition (b) contains
21-62 nodes), both of which can be subdivided into three
sub communities [27].

Facebook is a network of friendships among Facebook
users, wherein the vertex denotes a user and the edge
depicts that the users represented with the end points are
friends. This is a friendship network (available in SNAP
library also) with 347 vertices and 5038 edges [28].

Visualizing Networks Result by our Model

In this study an attempt has been made to produce
robust community detection results in dynamic networks.
At first our framework was applied on the two fundamental
and important networks (Fig. 3) and fortunately we
obtained satisfactory results compared with the baseline
approaches (Fig. 8).

As shown in Fig. 4 the Dolphin network can be treated
as a network having 4 communities, Wherein the main
two communities are node 1 — node 20 and node 21 —
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Fig. 3. Community structures of the Karate network (a) and American football network (b) as detected by our model where each
color represents distinct community

node 62. Furthermore the community comprising of nodes
from node 21 — node 62 are further split into 3 sub-
communities.

Next our model was applied on Facebook network. For
the sake of expositional clarity, we skip the labels of the
nodes so that the different community structures can be
seen clearly as shown in Fig. 5.

To visualize the relationship strength and the
corresponding relationship score in a better way, we have
plotted the Heatmap wherein nodes are represented by
columns and rows showing which pair of nodes are most
closely related as shown in Fig. 6. Each square shows the
relationship between the nodes on each axis where maroon
color indicates the positive relationship and blue color
indicates the negative relationship. The varying intensity of
color represents the measure of relationship. The stronger
the color is the larger is the relationship magnitude.

Fig. 4. Community structure of the Dolphin network clearly
showing further splitting of 214 community represented by
green, light green and blue color

Finally a brief internal working has been shown in
Fig. 7 for better understanding of the model. A sampled
graph obtained after performing BFS sampling on a simple
graph having 15 nodes by taking seed node as 6, since BFS
is fast in exploring the neighbourhood of a node so was
choosen.

Evaluation Metrics and Performance Comparison

To validate the performance of our model we have
employed NMI (normalized mutual information) and
ARI (adjusted random index), conductance, F1 score
to measure the similarity between the ground truth and
detected community structures, and the results are shown
in Fig. 8. Both the NMI and the ARI are commonly used
similarity assessment standard metrics which are based on
information theory and have been proven reliable. Given
two community network divisions A and B, NMI (A; B)
is computed as:

2I(A; B)

NMI (A; B) = H(ATH(B)

(6)

Wherein / (A; B) represents mutual information of A
with B and H (B) denotes entropy from B. The NMI value
ranges between 0 through 1, wherein 0 means that the
communities detected are totally independent of the ground

Fig. 5. Community structure of Facebook network, each color
represents a separate community
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truth communities, while 1 means a complete match with
the actual communities.

RI — Expected RI
ARI= : ™)
max RI — Expected RI

Wherein R/ represents the similarity between
two networks, partitions comprise all sample pairs.
Subsequently, it computes the number of pairs in the
expected and actual partitions of the network which are
allotted to the different or the same network partitions.

Conductance measures the fraction of total edge volume
that points outside the partition. The lower the conductance
value the better is the partitioning. Conductance is
computed as:

fle)=sc/2me + sc). ()

Wherein f{c) is the quality-measure function which
estimates the quality of a given community c; mc is the
number of edges inside the community c¢; and sc is the
number of edges leaving the community c, i.e. edges that
connect the members of ¢ to the other communities within
that network.

F1 Score is the harmonic mean of precision and recall
whose value ranges from 0 to 1 and it is calculated as:

precision x recall

F1 Score =2 ©

precision + recall

Fig. 8 reports the results of our framework on various
networks using the above mentioned metrics, computed
from the formulas (6)—(9).

In order to further compare the performance of our
model with other baseline approaches, such as CDCN
NMF proposed by Ye et. Al [6] and DPNMF proposed by
Lu et al. [25], we used the NMI metric computed from
equation (6) and the results are shown below in Fig. 9.

Model Performance Metrics

0.8
0.4
0.0

Karate Dolphin Football Facebook
= NMI
= ARI

= Conductance
= F1 Store

Fig. 8. Comparison of the different metric values obtained for
the results of our model for the 4 public datasets

Applications

NMF has become an essential technique in multivariate
data study because to the better semantic interpretability
and resulting sparsity in accordance with the non-negativity.
It has a long history of application to the domains
of optimization, maths, neural computing, machine
learning, pattern recognition, data mining, computer
vision and image engineering, spectral analysis of data,
chemo metrics, bioinformatics, criminology, geophysics,
economics and finance. More peculiarly, such applications
cover digital watermark, data mining of text, denoising
of image, restoration of image, segmentation of image,
image fusion, classification of image, image retrieval,
hallucination of face, recognition of face, recognition
of facial expression, audio pattern separation, speech
recognition, music genre classification, microarray analysis,
spectroscopy, blind source separation, classification of
gene expression, cell analysis, processing of EEG signal,
pathologic diagnosis, online discussion and prediction,
email surveillance, network security, stock market pricing,
earthquake prediction, and all that.

a b
Karate Dolphin
<2
0.98 0.9 -e- Proposed Model
-e—~ Proposed Model —— CDCN
— —— CDCN — -« DPNMF
2 207
0.94 = DPRME /._—————-"“‘
— ]
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0.90 . i
0 20 A 40 10 20 30 40 50
Time, s Time, s
Fig. 9. Performance comparison in term of NMI on Karate (a) and Dolphin networks (b)
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Conclusion

This work presented an improved non-negative matrix
factorization model as well as comprehensive review of
existing NMF methods employed in support of dynamic
community detection. Moreover, this work highlighted the
strengths and limitations of the existing methods in order
to determine the extent to which work in this field is being
done and to identify the significant research gap that exists
as well as to investigate if significant improvement can be
achieved on these existing NMF-based models. Fortunately,
our model produced satisfactory results compared with
the baseline approaches such as CDCN and DPNMF.
Simultaneously there are some issues discussed below
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