
Научно-технический вестник информационных технологий, механики и оптики, 2023, том 23, № 1 
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 1 105

 НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

 январь–февраль 2023 Том 23 № 1 http://ntv.ifmo.ru/

 SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS

 January–February 2023 Vol. 23 No 1  http://ntv.ifmo.ru/en/

 ISSN 2226-1494 (print)  ISSN 2500-0373 (online)

январь–февраль 2023 Том 23 Номер 1

© Kovantsev A.N., 2023

doi: 10.17586/2226-1494-2023-23-1-105-111

Probabilistic criteria for time-series predictability estimation
Anton N. Kovantsev

ITMO University, Saint Petersburg, 197101, Russian Federation
ankovantcev@itmo.ru, https://orcid.org/0000-0003-1765-7001

Abstract 
Assessing the time series predictability is necessary for forecasting models validating, for classifying series to optimize 
the choice of the model and its parameters, and for analyzing the results. The difficulties in assessing predictability occur 
due to large heteroscedasticity of errors obtained when predicting several series of different nature and characteristics. 
In this work, the internal predictability of predictive modeling objects is investigated. Using the example of time series 
forecasting, we explore the possibility of quantifying internal predictability in terms of the probability (frequency) of 
obtaining a forecast with an error greater than some certain level. We also try to determine the relationship of such a 
measure with the characteristics of the time series themselves. The idea of the proposed method is to estimate the internal 
predictability by the probability of an error exceeding a predetermined threshold value. The studies were carried out 
on data from open sources containing more than seven thousand time series of stock market prices. We compare the 
probability of errors which exceed the allowable value (miss probabilities) for the same series on different forecasting 
models. We show that these probabilities differ insignificantly for different forecasting models with the same series, 
and hence, the probability can be a measure of predictability. We also show the relationship of the miss probability 
values with entropy, the Hurst exponent, and other characteristics of the series according to which the predictability can 
be estimated. It has been established that the resulting measure makes it possible to compare the predictability of time 
series with pronounced heteroscedasticity of forecast errors and when using different models. The measure is related 
to the characteristics of the time series and is interpretable. The results can be generalized to any objects of predictive 
modeling and forecasting quality scores. It can be useful to developers of predictive modeling algorithms, machine 
learning specialists in solving practical problems of forecasting.
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Аннотация
Предмет исследования. Задача оценки предсказуемости временных рядов возникает при валидации моделей 
прогнозирования, при классификации рядов с целью оптимизации выбора модели и ее параметров, при 
анализе результатов. Большая гетероскедастичность ошибок, получаемых при прогнозировании нескольких 
различных по природе и характеристикам рядов, часто приводит к затруднениям при оценке предсказуемости. 
В работе исследована внутренняя предсказуемость объектов предсказательного моделирования. На 
примере прогнозирования временных рядов определена возможность количественной оценки внутренней 
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предсказуемости по вероятности (частоте) получения прогноза с ошибкой, больше заданного уровня, и 
связь такой меры с характеристиками самих временных рядов. Метод. Суть предлагаемого метода состоит в 
оценивании внутренней предсказуемости по вероятности возникновения ошибки, большей заранее заданного 
порогового значения. Основной результат. Исследования выполнены на данных из открытых источников, 
содержащих более 7000 временных рядов биржевых котировок. Проведено сопоставление полученных значений 
вероятности возникновения ошибок, превосходящих допустимое значение (вероятностей промаха) для одних 
и тех же рядов на различных моделях прогнозирования. Показано, что при использовании моделей с одним и 
тем же рядом эти вероятности отличаются незначительно и могут служить мерой предсказуемости. Выявлена 
связь полученных значений вероятности с энтропией, показателем Хёрста и иными характеристиками рядов, по 
которым оценивается предсказуемость. Установлено, что полученная мера позволяет сравнивать предсказуемость 
временных рядов при выраженной гетероскедастичности ошибок прогнозирования и при применении разных 
моделей. Мера связана с характеристиками временного ряда и интерпретируема. Практическая значимость. 
Полученные результаты могут быть обобщены на любые объекты предсказательного моделирования и меры 
оценки качества прогноза. Результаты исследования будут полезны разработчикам алгоритмов предсказательного 
моделирования и специалистам по машинному обучению, при решении практических задач прогнозирования.
Ключевые слова
внутренняя предсказуемость, ошибка прогнозирования, вероятность промаха
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Introduction

In almost every case when we deal with time series 
forecasting, we need a meaningful and understandable 
measure of predictability to evaluate the results. In other 
words, we want to know whether our model achieved 
the best possible quality or not. Hence, some measure of 
intrinsic predictability is necessary which could explain 
how likely a misprediction is, or what the range of errors 
might occur, or what variance of the errors is expected 
for the certain series. And of course, it would be very 
nice if we could get all these aspects before the model is 
constructed, fitted, and running. So, we’re going to find 
the way to answer these questions by time series analysis. 
For a rather big dataset we can calculate different features 
whose connection to predictability was approved by related 
works, and build some regression that hypothetically can 
connect these features to misprediction probability or 
errors variance. Obviously, we can’t avoid involving some 
forecasting model which must produce these probabilities 
and variances, but for this research we presume that this 
experience with one model can be generalized to the class 
or classes of models. At least, for the future work we plan to 
use several models of different classes in ensemble which 
will approximate the real metrics of intrinsic predictability 
more accurately.

Related works

The earliest mention of the idea to distinguish realized 
and intrinsic predictability, which we could find, was 
proclaimed by Edward N. Lorenz in [1] that refers to a 1996 
paper. The philosophic discussion on the predictability 
issues in various senses is going on till nowadays. For 
instance, Stefan Rummens [2] argues with Victor Gijsbers 
[3]. Meanwhile, this discussion is as interesting and 
entertaining as it is far from practical use and everyday 
needs. At the same time not so many authors attempted 
to find some quantity measure for time-series intrinsic 

predictability. The idea to match some time series features 
or their combination to intrinsic predictability was discussed 
in [4] where predictability was quantified with permutation 
entropy, and in [5] where several features including Hurst 
exponent and Kolmogorov-Sinai entropy were used for 
series clustering according to their predictability. The 
similar approach base on transforming a time series to 
graph is proposed in [6]. All these methods are based on 
forecasting errors estimation, and they don’t consider the 
fact that the series of bad predictability can perform rather 
good forecasting quality. Having this fact in mind, the 
authors of [7] state that intrinsic predictability of chaotic 
systems might be high, but the realized predictability is 
expected to be low and difficult to improve substantially. 
In [8] the rank-based nonlinear predictability score was 
adapted to time series sampled from time-continuous 
flows and performed a higher sensitivity for deterministic 
structure in noisy signals.

One more approach is represented in [9] where 
intrinsic predictability is estimated by wavelet entropy 
energy measure after time series wavelet transformation. 
Besides the forecasting error, they also use Nash–Sutcliffe 
efficiency for quality estimation. 

We failed to find any research where statistical or 
probabilistic were used for matching of the predictability 
measure, so off we go.

Real-world data

In our experiments we used the open dataset called 
Huge Stock Market Dataset from Kaggle which contains 
historical daily prices and volumes of all U.S. stocks and 
ETFs. There are more than 7,000 time series mostly of 
fractal nature [10] with a significant part of the random-
walking process. Nevertheless, we expected that this set 
includes the series of different intrinsic predictability and 
would be sufficient for the aim of our research.

We dropped the short series with less than 730 
observations and shrunk the rest up to last 730 points. 
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So, our series are neither too short to make the predictive 
model to do its best, nor too long to satisfy memory and 
computation time requirements. The number of series after 
such preprocessing was reduced to 5,121. Every data file 
in the collection contains the series of opening, high, low, 
closing prices and trading volume per day. As all the prices 
are rather close to each other, we take the closing price for 
the target series.

We use the set of the time series features the same 
as was used in [5]: Kolmogorov-Sinai entropy, Hurst 
exponent, embedding dimension, noise measure and 
random-walk detection. Permutation entropy was explored 
too, as many researchers usually mention in connection to 
predictability.

The Kolmogorov-Sinai entropy (hμ
KS) can be 

calculated based on the entropy rates of finite partitions of 
the state space of the series [11]. For each of the n finite 
partitions ξ = {C1, C2, …, Cn} of the state space M = ∪i=1

n Ci  
with dynamics given by a measurable transformation T 
and defined probability measure μ(T–1Ci1 ∩ … ∩T–nCin), 
the entropy rate is

 hμ(T, ξ) = – lim
n→∞

  ∑
i1,…,in

μ(T–1Ci1 ∩ … ∩T–nCin) × 

 × lnμ(T–1Ci1 ∩ … ∩T–nCin).

We take the supremum of the entropy rate over all finite 
partitions:

 hμ
KS(T) = sup

ξ
hμ(T, ξ).  

Hurst exponent is used as a measure of long-term 
memory of time series. According to [12], we estimate it 
by the re-scaled range: 

 R(τ) = max
1≤t≤τ

 ∑
j=1

τ
(xj – xτ) – min

1≤t≤τ
 ∑
j=1

τ
(xj – xτ)

and standard deviation:

 S(τ) = ∑
t=1

τ
(xτ – xτ)2,

where τ ∈ [3, N] are the time steps for a discrete time series, 
x(t) is the series value on step t.

Hurst exponent can be calculated as: 

 H(τ) = lim
τ→∞

 ,

where α ≈ 0.5 is a Hirst’s empirically found constant. 
These re-scaled range R(τ) and standard deviation S(τ) 

are used to represent the R/S-trajectory RS(τ) =  that 

helps to estimate the memory depth of the time series.
Embedding dimension is a measure of the 

dimensionality of the space occupied by a set of random 
points, often referred to as a type of fractal dimension. It’s 
less noisy when only a small number of points is available 
and is often in agreement with other calculations of 

dimension. It can be calculated by means of the correlative 
integral for time series of finite length:

  C(r) = ∑
i=1

m
 ∑
j=i+1

m
,

where ρk(i, j) = ∑
l=1

k
(xi–k+l – xj–k+l)2 ; θ(x) — Heaviside 

function; r — characteristic phase space cell size.
The value of embedding dimension is the slope of the 

logarithmic graph of the correlation integral [11] and it can 
be evaluated as the following limit:

 dk = lim
r→0

 lim
m→∞

.  

Noise measure feature is based on the idea of 
Robert M. May, firstly published in 1976 [13], to compare 
the standard deviation of a time-series with the standard 
deviation of its first-order differences.

 FN = 1 – , 

where xiʹ = xi+1 – xi is the first-order differences; x, xʹ are 
mean values of the initial time series and corresponding 
differenced series. This measure can be used to find a 
random walk process for which the first-order differences 
should be noise.

The idea is to detect high-frequency noise that increases 
the comparative deviation of value change on each time 
step; so, the higher value of this measure means the lower 
noise influence in time series. 

Forecasting and realized predictability

In order to collect information about forecasting quality 
statistics, we launched the Extreme Gradient Boosting 
(XGB) forecasting model for each time series of the data 
set. Hyperparameters were chosen empirically for the best 
performance on 30-days horizon for most of the series. 
Thus, we got 20 estimators and maximal depth equal to 8. 
Every single time series is forecasted 107 times. We take 
365-days observations as the training period and 30-days 
forecast as a test, then we repeat the same with a 3-day 
time shift. The stock market time series are chaotic enough 
to eliminate the effect of dependencies in the sequential 
forecasting experiments. The procedure is like a rolling 
window. So, for each of the series, we get 107 values of 
Mean Absolute Percentage Error (MAPE) and calculate the 
mean value and standard deviation for these error series, 
and for the part of errors which is greater than 10 %, we 
consider that an error of less than 10 % is sufficient for 
the good forecast quality. This part helps to estimate the 
misprediction probability.

Of course, this method of predictability estimation is 
inseparably connected with the forecasting model. This 
connection could be broken if we show that the same 
metrics for some other models of different kinds are either 
close or at least correlated with those for our basic model. 
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Local approximation (LA) and Maximal Similarity (MS) 
were applied in the same conditions as the alternate models. 
The first one was designed by prof. Alexander Loskutov 
[11], and it is based on neighborhood of points of system 
trajectory in the state space; the other one was invented 
by Irina Chuchueva [14], and it uses the rescaled patterns 
of a certain length in the series to make a forecast. Both 
models are described in detail in [5] and [6]. In Fig. 1, a 
we can see that squared misprediction probability for MS 
correlates with that for XGB with coefficient of 0.94. As the 
values distribution is obviously far from normal, and it will 
be shown further, we use the Spearman’s rank coefficient 
to estimate the correlations. In the case of LA there is no 
need to deal with squared values. The correlation is 0.92, 
the scatter plot is presented in Fig. 1, b. 

So, we can conclude that at least for three types of 
forecasting models the scores of misprediction probability 
are correlated and this measure could be considered model 
independent.

Regression model for intrinsic predictability 
measuring

As we have got a set of time series features and 
the values which we consider to be the measure of 
predictability, we can try to find some dependence between 
them. The scatter matrix for the features shown in Fig. 2 
looks not very promising. Pairwise correlation coefficients 
between the features and scores are collected in Table. 
They are not great as well, but nevertheless we try to build 
a regression model. This picture also confirms that, as 
we noted earlier, the value distributions are not normal. 
Besides, it illustrates the large heteroscedasticity of errors. 
For instance, the more noise, the wider is standard deviation 
range.

Presumably, models of linear regression would fail with 
such sort of predictors. We use an Extra-Trees regressor 
which fits a number of randomized decision trees on 
various sub-samples of the dataset and uses averaging to 
improve the predictive accuracy and control over-fitting. Its 

Fig. 1. Misprediction probability for MS (a) and LA (b) models regarding to XGB model

Fig. 2. Scatter matrix for features and scores. 
Features: noise — noise measure; walk — random walk measure; edim — embedding dimension; hurst — Hurst exponent;  

ksent — Kolmogorov-Sinai entropy; permut — permutation entropy. Scores: meanmape — mean MAPE value for all samples; 
mapegt10 — the part of samples with MAPE>10 %, std — standard deviation
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hyper-parameters were chosen empirically: 128 estimators 
with minimal samples split of 16 and min samples leaf of 2. 
We use coefficient of determination (R2) for regression 
scoring. This regressor performance score was R2 = 0.60 on 
the train set, R2 = 0.32 and R2 = 0.24 on 50-times splitting 
cross-validation. The Mean Absolute Error is 0.12 for 1706 
test samples. The error distribution analysis shows that 
most of errors are in the range of ±0.2 and there is a bias 
about +0.07.

We also tried Random Forest Regression model, 
Gradient Boosting, and based not on random trees model 
of K-Neighbors Regression. None of them performs better 
regression quality.

Experiment results and discussion

As we can see in the previous section, the regressor 
performance is rather poor, so, our experiments are aimed 
to find out whether it’s possible to get some use in spite of 
that. Table shows that correlations between the features 
and responses are weak which explains the low score of 
the regression. 

The further feature analysis by means of Shapley values 
shows that the impact of the features on the result could be 
opposite for different series which is reflected as the mess 
of the red and blue dots on the bee-swarm plot in Fig. 3. 
All the features are actually important for Extra-Trees 
regression. Kolmogorov-Sinai entropy is most important 
with relative importance score of 0.33, the least one is 

Hurst exponent with score of 0.08. We also can notice that 
Kolmogorov-Sinai entropy is much more correlated with 
misprediction probability, and its importance is more than 
those for usually used permutation entropy. The mess of 
Shapley values at least for our dataset is not that big too.

In the last item of our research agenda, we have got 
the misprediction probability values for the real model 
and estimated it by the regressor. The distribution of these 
values is illustrated in Fig. 4, a as a histogram which shows 
that the regressor tends to overestimate the probability due 
to its bias, and the range of real values is wider.

To get a more detailed picture of the regressor 
performance, we can see the scatter plot in Fig. 4, b with 

Table. Spearman correlation coefficients for features and scores

Noise 
measure

Random 
walk

Embedding 
dimension

Hurst 
exponent

Kolmogorov-Sinai 
entropy

Permutation 
entropy

Mean MAPE value –0.12 0.320 –0.17 0.02 –0.370 0.13
Part of samples with  
MAPE >10 %

–0.11 0.290 –0.18 0.04 –0.383 0.11

Standard deviation –0.12 0.339 –0.16 –0.01 –0.330 0.09

Fig. 3. Features impact analysis by Shapley values 
(Designations are the same as those in Fig. 2)

Fig. 4. Distribution of real and estimated misprediction probability as a histogram (a) and as a scatter plot with the least squares 
approximation (b)
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the least squares approximation and ideal line shown. The 
correlation and distribution of the real and predicted values 
are quite suitable for time series predictability estimation. 
We suppose that for some not very precise real-world tasks 
that estimation would be enough. 

Future work

For our future work we plan to increase the number 
and variety of our experiments on predictability. Of course, 
it’s necessary to track the dependence of misprediction 
probability on the forecasting horizon. The time series 
of different shapes and nature should be tested as well. 
It would be better to get more different models for 
experiments and maybe to take the best quality from among 
all models for the regressor training. 

Besides, as we said above, the other score could 
be useful for time-series predictability measuring. It is 
forecasting errors standard deviation. This score also worth 
to be explored. To continue the predictability exploring, 
it could be useful to take into account not only errors 
themselves but the shape of their distribution.

Conclusion

Our probabilistic method of intrinsic predictability 
evaluation is an attempt to pay attention to the numerously 
noticed fact that the bad forecasting quality not obligatory 
can occur for the series which features indicate bad 

predictability. Our regressor helps to estimate the 
probability of poor-quality forecast despite the rather big 
errors of the regressor.

The proposed method of predictability evaluation 
looks very much like the simple confidence interval 
calculation. But there is some difference. First, making 
up the confidence interval we first define the confidence 
level and then calculate the thresholds for predicted values. 
Here we approach from the opposite side. We settle the 
thresholds and count how often the shooter hits it. Then, 
for the statistical calculation of the confidence interval the 
normally distributed value is strongly desired. In our case 
we were never tied by such a requirement. The confidence 
interval is used mostly for continuous values and doesn’t 
work with classification and ranking models. Our approach 
can be applied to any quality score for almost every type of 
model. We may set a threshold on F-score or accuracy and 
count the amount of hits.

Besides, the time series predictability is usually 
estimated by one of the series features like entropy or Hurst 
exponent or something else. We try to get use of a set of 
several features which turns out to be rather helpful in such 
estimation.

The benefit of proposed approach to time series 
predictability scoring is in direct evaluation of 
misprediction probability in quite understandable terms 
which suits for all sorts of time series and depends only on 
the forecasting horizon.
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