
Научно-технический вестник информационных технологий, механики и оптики, 2023, том 23, № 2 
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 2 313

 НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

 март–апрель 2023 Том 23 № 2 http://ntv.ifmo.ru/

 SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS

 March–April 2023 Vol. 23 No 2  http://ntv.ifmo.ru/en/

 ISSN 2226-1494 (print)  ISSN 2500-0373 (online)

март–апрель 2023 Том 23 Номер 2

© Bothra S.K., Singhal S., Goyal H., 2023

10.17586/2226-1494-2023-23-2-313-322

Hybrid JAYA algorithm for workflow scheduling in cloud
Sandeep Kumar Bothra1, Sunita Singhal2, Hemlata Goyal3

1,2,3 Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
1 bothrajain@gmail.com, https://orcid.org/0000-0003-0555-569X 
2 sunita.singhal@jaipur.manipal.edu, https://orcid.org/0000-0003-2462-8102 
3 hemlata.goyal@jaipur.manipal.edu, https://orcid.org/0000-0003-1344-0921

Abstract
Workflow scheduling and resource provisioning are two of the most critical issues in cloud computing. Developing an 
optimal workflow scheduling strategy in the heterogeneous cloud environment is extremely difficult due to its NP-complete 
nature. Various optimization algorithms have been used to schedule the workflow so that users can receive Quality of 
Service (QoS) from cloud service providers as well as service providers can achieve maximum gain but there is no such 
model that can simultaneously minimize execution time and cost while balancing the load among virtual machines in a 
heterogeneous environment using JAYA approach. In this article, we employed the hybrid JAYA algorithm to minimize 
the computation cost and completion time during workflow scheduling. We considered the heterogeneous cloud computing 
environment and made an effort to evenly distribute the load among the virtual machines. To achieve our goals, we used 
the Task Duplication Heterogeneous Earliest Finish Time (HEFT-TD) and Predict Earliest Finish Time (PEFT). The 
makespan is greatly shortened by HEFT-TD which is based on the Optimistic Cost Table. We used a greedy technique 
to distribute the workload among Virtual Machines (VMs) in a heterogeneous environment. Greedy approach assigns 
the upcoming task to a VM which have lowest load. In addition, we also considered performance variation, termination 
delay, and booting time of virtual machines to achieve our objectives in our proposed model. We used Montage, LIGO, 
Cybershake, and Epigenomics datasets to experimentally analyze the suggested model in order to validate the concept. Our 
meticulous experiments show that our hybrid approach outperforms other recent algorithms in minimizing the execution 
cost and makespan, such as the Cost Effective Genetic Algorithm (CEGA), Cost-effective Load-balanced Genetic 
Algorithm (CLGA), Cost effective Hybrid Genetic Algorithm (CHGA), and Artificial Bee Colony Algorithm (ABC).
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Аннотация
Планирование рабочих процессов и предоставление ресурсов — две наиболее важные проблемы облачных 
вычислений. Разработка оптимальной стратегии планирования рабочих процессов в гетерогенной облачной 
среде чрезвычайно сложна из-за ее NP-полной природы. При планировании рабочего процесса используются 
различные алгоритмы оптимизации для получения пользователями качественного обслуживания (Quality of 
Service, QoS) от поставщиков облачных услуг. При этом поставщики услуг должны получать максимальную 
выгоду. Сегодня не существует такой модели, которая могла бы одновременно минимизировать время и 
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стоимость выполнения работ при балансировке нагрузки между виртуальными машинами в гетерогенной среде с 
использованием подхода JAYA. В работе предложен гибридный алгоритм JAYA для минимизирования стоимости 
вычислений и времени выполнения работ при планировании рабочего процесса. Рассмотрена гетерогенная среда 
облачных вычислений, позволяющая равномерно распределять нагрузку между виртуальными машинами. Для 
достижения этих целей использованы эвристические подходы Task Duplication Heterogeneous Earliest Finish 
Time (HEFT-TD) и Predict Earliest Finish Time (PEFT). Длительность выполнения работ значительно сокращается 
благодаря HEFT-TD, основанному на таблице оптимистичных затрат (Optimistic Cost Table). Для распределения 
рабочей нагрузки между виртуальными машинами в гетерогенной среде использован жадный алгоритм. 
Жадный алгоритм назначает предстоящую задачу виртуальной машине с наименьшей нагрузкой. Рассмотрено 
изменение производительности, задержки завершения и время загрузки виртуальных машин. С целью проверки 
предложенной концепции для экспериментального анализа представленной модели использованы наборы данных 
Montage, LIGO, Cybershake и Epigenomics. Выполненные эксперименты показали, что рассмотренный гибридный 
подход превосходит более ранние алгоритмы по минимизации стоимости и времени его выполнения, такие как 
Cost Effective Genetic Algorithm (CEGA), Cost-effective Load-balanced Genetic Algorithm (CLGA), Cost effective 
Hybrid Genetic Algorithm (CHGA) и Artificial Bee Colony Algorithm (ABC).
Ключевые слова
алгоритм JAYA, планирование рабочего процесса, стоимость выполнения, время выполнения, баланс нагрузки, 
облачные вычисления
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Introduction

Cloud computing is an emerging sector of computing 
in which a collection of resources is provided to a user as a 
service rather than as a product. The best thing about these 
services is that consumers do not need to be aware of the 
actual locations of the resources or the configurations of 
these resources that provide the needed service. A workflow 
submitted by a user to be executed on the cloud is a group 
of interdependent tasks that are represented by a Directed 
Acyclic Graph [1]. When workflow scheduling is done in 
a heterogeneous computing system, the problem becomes 
more complicated since the processors in the distributed 
environment may not be similar and require varying 
amounts of time to complete the same operation. Workflow 
scheduling and resource provisioning are two of the most 
critical issues in cloud computing. Developing an optimal 
workflow scheduling technique in the heterogeneous cloud 
environment is extremely difficult due to its NP-complete 
nature [2].

Various optimization algorithms [3] have been used to 
schedule the workflow so that users can receive Quality 
of Service (QoS) from cloud service providers. Task 
scheduling is essential for optimum utilization of cloud 
resources and also for providing end-users with a QoS 
[4]. Task scheduling issues come in two flavors: static 
scheduling and dynamic scheduling. In the static category, 
all task details, including the costs of computation and 
communication for each activity as well as how those 
activities relate to one another, are known in advance. 
However, in the dynamic category, such data is not 
available, and choices are made in real time. Furthermore, 
static scheduling refers to compile-time scheduling, and 
dynamic scheduling refers to scheduling at runtime [5].

Heuristic approaches are problem-dependent and 
frequently too greedy, resulting in their becoming stuck in 
a local optimum and failing to achieve an optimal solution. 
When there is partial information or limited computing 
power, a meta-heuristic is a higher-level technique or 
heuristic that is used to find, generate, or select a heuristic 

capable of offering a good solution to an optimization 
problem.

Due to the poor convergence rate of the meta-heuristic 
technique, achieving an optimal solution is difficult. As a 
result, a one-size-fits-all solution will not guarantee optimal 
resource utilization. That’s why, the hybrid nature of the 
approach is one of the best ways to reach our goal function. 
So we developed a new model using the JAYA algorithm 
where seeding is performed using the Task Duplication 
Heterogeneous Earliest Finish Time (HEFT-TD) [6] and 
Predict Earliest Finish Time (PEFT) [7] heuristics. We 
made an effort in this paper to shorten the computation time 
and cost while still meeting the deadline.

Our goal was to create a hybrid metaheuristic strategy 
that was effective for decreasing processing time and costs 
while maintaining load balance amongst Virtual Machines 
(VMs) under time restrictions. The strategy used in this 
work employs a HEFT-TD and PEFT strategies during 
population initialization, which helps with cost cutting and 
load balancing.

The following is the rest of the article which 
summarizes prior research in this topic. The implementation 
and outcomes of the recommended method, as well as 
a comparison with existing methods, are discussed in 
further detail. This publication also includes a discussion 
and conclusion that recommends additional research in 
this area.

Related Work

The objective of our model in a cloud computing context 
is to improve the system turnaround time and resource 
usage. The number of interdependent jobs and available 
resources in a distributed environment varies dynamically. 
Various scheduling algorithms developed to obtain optimum 
solution, some of them heuristic and other are meta-
heuristic as both methodologies are integral to maintaining 
optimal resource scheduling as we mentioned earlier.

Based on the Particle Swarm Optimization (PSO) 
technique, the authors develop a multi-objective algorithm 
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for scheduling workflow. They use two factors in their 
innovative method to fulfill their goals: makespan and 
resource usage as well as a strict encoding technique. 
Despite the fact that their testing results show that their 
technique is more resilient than baseline approaches, they 
fail to account for VMs balancing [8].

The authors [9] use a Pareto distribution to allocate 
unused VMs in Ant Colony Optimization (ACO) to 
minimize computation cost and time. They also use 
a minimal relocation of VMs strategy to boost the 
effectiveness of their approach in assessing workflow 
computation time and price; however, as their approach 
is dependent on a relatively small workflow size, the 
performance of the algorithm is uncertain.

To schedule the workflow, the authors enhanced PSO. 
In order to achieve the lowest operational time and cost, 
they started by regulating the global and local performance 
of particles using a nonlinear decreasing technique of 
inertia weight. However, they failed to take into account the 
dynamic nature of the cloud computing environment [10]. 

An Artificial Bee Colony (ABC) based algorithm is 
proposed in the literature [11], with the authors emphasizing 
the QoS regulations and critical security principles. A hive 
table is kept in a data center to reduce execution cost, 
execution time, job migration, and VM load-balancing. 
They should build a hybrid strategy because the ABC 
approach alone is unable to manage all of these aspects.

For load balancing during workflow scheduling 
in the cloud, the author [12] uses the JAYA algorithm. 
Authors [13] suggested a modified backfilling technique 
for optimal cloud resource use in which they schedule 
jobs without a decision-maker to firmness conflicts. To 
lower the execution cost and duration, a vocalization 
of the humpback whale optimization algorithm [14] is 
presented. By using less energy, this technique protects the 
environment. Authors [15] proposed an efficient method for 
scheduling work in the cloud utilizing the MAPREDUCE 
and GA-WOA. The proposed approach consists of stages, 
such as feature reduction, feature selection, task separation, 
and task scheduling. They intended to reduce makespan, 
however they did not consider load balance among virtual 
machines.

Although the authors [16] integrated execution time 
and throughput in their model based on Bat algorithm, but 
they didn’t take into account communication time which 
is a crucial component in reducing execution time and 
increasing throughput. They were likewise unconcerned 
about the load balance between the multiple VMs also. 
This obscurity is eliminated in [17] when the authors 
tried to optimize the resource allocation for VMs and 
suggested using the Bat approach to evenly distribute the 
workload over several VMs. In the paper [18], authors 
proposed a hybrid method that combined Heterogeneous 
Earliest Finish Time (HEFT) and Genetic Algorithm 
(GA) to reduce processing costs and time under budget 
limitations; however, they were unable to account for VM 
booting time. In the literature [19], a multi-objective load 
balancing method, which is based on GA, was proposed; 
in it delays in acquisition are ignored while cost and time 
are decreased. In the literature [20], authors described an 
approach utilizing JAYA in which they only concentrated 

on minimizing the execution cost and makespan but did not 
take into account the performance variance and acquisition 
delay of the VM as well as they did not aware regarding 
load balance among VMs. To address these issues, we were 
inspired to implement a hybrid JAYA model “HJA”.

After a thorough examination of the literature, we 
determined the research gap that researchers’ applied 
heuristic methods to workflow scheduling are ineffective 
due to the NP-hard nature of the problem. Iteration 
is required for metaheuristic techniques to reach an 
optimal solution. As a consequence, hybrid metaheuristic 
approaches outperform traditional metaheuristic techniques 
in terms of identifying the optimal solution.

Proposed Methodology

Description of JAYA
After a deep literature review, we decided to implement 

a hybrid model using the JAYA algorithm (HJA) which 
is based on the heuristics of HEFT-TD and PEFT. Since 
all evolutionary and swarm cognitive algorithms are 
unpredictable and necessitate the same governing variables, 
such as size of population and iteration number, we choose 
the JAYA [21] technique. In addition to the standard 
control parameters, various algorithms, such as ACO, 
PSO, GA, etc., also need their own algorithm-specific 
parameter settings, such as pheromone value, evaporation 
rate, cognitive acceleration constant, and crossover 
rate. The above-mentioned algorithms performance is 
greatly impacted by the right adjustment of algorithm-
specific parameters. Inadequately adjusting algorithm-
specific parameters either leads to the best local result or 
increases processing effort. There are no algorithm-specific 
parameters needed for JAYA. It was invented by R. Venkata 
Rao in 2016 [21]. It is a parameter-less algorithm that 
requires a few iterations to achieve an optimum solution. 

Xj,k
t+1 = Xj,k

t  + r1j
t(Xj,best

t  – |Xj,k
t |) – r2j

t(Xj,worst
t  – |Xj,k

t |).  (1)

New solution is obtained by applying the above 
mentioned eq. (1). 

During the tth iteration jth variable of kth solution is 
update by Xj,k

t+1. Random number r1 and r2 have range 
between 0 to 1. During the tth iteration best candidate is 
Xj,best

t  and worst candidate is Xj,worst
t .

Brief introduction of HEFT-TD and PEFT
HEFT-TD [6] is based on the duplication approach, this 

approach can be used to reduce the cost of communication 
between two dependent jobs. It is predicated on the concept 
that communicating across dependent activities running on 
the same system is completely free. In order to achieve this 
goal and reduce the cost overhead associated with inter-task 
communication, this strategy duplicates predecessor tasks.

The PEFT [7] is composed of two stages: the task 
prioritizing phase, which establishes task priorities, and the 
processor selection phase, which chooses the best processor 
for carrying out the current job. This algorithm forecasts 
by computing an Optimistic Cost Table while maintaining 
quadratic time complexity. The sum of a node earliest start 
time and computation time is called the Earliest Finish 
Time (EFT) of a node on a particular processor.
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Computation of Execution Time and Cost
In this study, we focused not just on reducing execution 

costs while achieving the time constraint, but also 
managing load among various VMs. We took into account 
a VMs acquisition delay and performance fluctuation, both 
of which are crucial factors in reducing computation time 
in a diversified cloud computing environment.

 ETVMk(Ti) = . (2)

Here ETVMk(Ti) is task execution time which we 
obtained by dividing the size of the task (SizeTi) through the 
processing speed of the kth VM (SpeedVMk) as mentioned 
in eq. (2).

 TTEij = . (3)

Here TTEij is the time consumed to transfer the data 
between tasks scheduled in the different VMs. It is also 
known as communication time. It can be calculated by 
using the size of an output data file and average bandwidth 
β as mentioned in eq. (3) where Eij refers to the edge 
between parent task Ti to child task Tj, and DataFileTi is 
the output file of task Ti.

 avail(VMk) = STTi +      , (4)

avail(VMk) indicates when kth VM is ready to execute new 
task. PerVar is performance variation of VM and STTi is the 
time which is estimated to start the execution as depicted 
in eq. (4). 

 STTi = acq_delay, if task is root node. (5)

We used eq. (5) to compute the starting execution time 
of root node where acq_delay refers to booting time of 
VM, i.e. 60 sec.

STTi = max{avail{VMk}, maxTp∈pred(Ti){FTTp + TTEpi}}. (6)

If the task is not a root node, then STTi is computed 
using eq. (6) where FTTi is the time which is estimated to 
finish the execution.

 FTTi = STTi +      . (7)

By using the eq. (7) we computed the finishing time 
of task Ti.

 If TET ≤ D, TET = maxTiεW{FT(Ti)}. (8)

TET is total execution time which also included the 
termination delay of last VM which is executed till end of 
complition. TET is computed using eq. (8). 

 TEC = ∑
VMn

n=1
Ctype(VMk)× . (9)

If TET does not violate the deadline constraint (D) then 
Total Execution Cost (TEC) is calculate as given in eq. (9) 
where Ctype(VMk) denotes the cost of execution on VM of k 
type, while VMno_ST and VMno_ET is the start and end times 
of VM execution, respectively.

Our experiment takes into account three types of 
deadline constraints: hard, medium, and soft. 

 Deadline D = (α + 1) × minET(Wi). (10)

Above, eq. (10) used to calculate the deadline where 
minET(Wi) is the sum of time to start and execute all the 
tasks of workflow Wi on the fastest VM, and α is a step 
length whose value is 0.4. The hard range is 0 to 1.2, the 
medium range is 1.2 to 2.8, and the soft range is 2.8 to 4.4. 
All above equations are taken from literature [22].

Proposed Algorithm
1. Determine the population size and termination criteria
2. Initialize one-one set of candidate solution using 

HEFT-TD and PEFT
3. Initialize remaining N-2 population using random 

technique with greedy approach
4. Compute the fitness of each candidate solutions in 

the population using fitness function using eq. (8) & 
eq. (9)

5. Find the best and worst candidate solutions
6. Apply the eq. (1) to all candidate solutions
7. Compute the Finish Time of candidate solution
8. According to eq. (10), check the deadline constraint of 

candidate solution
9. If any candidate solution does not satisfy deadline 

constraint according the eq. (8), then go to step 6 
otherwise compute TEC using eq. (9)

10. If (Xj,k
t+1) ≤ (Xj,best

t ) then
11. (Xj,best

t ) = (Xj,k
t+1)

12. End If
13. Repeat steps 5 to 12 until termination criteria satisfied
14. Return best candidate solution

In our JAYA-based hybrid module, the population 
is initialized using three techniques. One individual is 
initialized using HEFT-TD, another one using the PEFT 
approach, and the remaining candidate solutions are 
generated using a random method with a greedy strategy. 
These approaches not only minimize the makespan but 
also reduce the computation cost. The fitness of each 
candidate is computed using eq. (8) and eq. (9), and the 
JAYA approach is applied using eq. (1) to find a more 
optimum solution. If the candidate solution satisfies the 
deadline constraint criteria, then the total execution cost 
is computed. These steps are iterated until we receive the 
optimum solution. Fig. 1 illustrates our model through 
flowchart to explain each step.

Evaluation of Performance

Experimental Environment
We included various types of workflows as benchmarks 

like Montage, Cybershake, LIGO, and Epigenomics, with 
sizes of fifty, hundred, and five hundred tasks. 

Montage represents an astronomy application where 
the majority of nodes focus more on I/O than processing. 
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The “Flexible Image Transport System” (FITS) format 
photographs used as input in this astronomy application 
are output as custom sky mosaics. Cybershake is employed 
by “Southern California Earthquake Center” to display 
earthquake risks in a particular area. It produces artificial 
seismograms. Additionally, this process requires a lot of 
memory and a central processing unit. Epigenomic is 
bioinformatics application workflow where the majority 
of the nodes are CPU-intensive. Changes in human cell 
gene function are referred to as epigenetic state and they 
are mapped on a genome-wide scale by an epigenomic 
approach. “Laser Interferometer Gravitational-wave 
Observatory” is acronym standing for LIGO. This scientific 
workflow uses a lot of CPU power and consumes a lot of 
memory. Numerous things happen in the universe that 
causes gravitational waves which it detects.

We executed the suggested model HJA in a JAVA-
based robust environment and reached at a conclusion after 
performing each type of workflow 30 times. We examined 
five different types of VMs according to requirements [22] 
as illustrated in Table 1. We used the Amazon Elastic Block 
Store (EBS) average bandwidth of 20 kbps1. We employed 

1 Amazon Elastic Block Store. Available at: https://aws.
amazon.com/ebs/ (accessed: 22.07.2020).

500 candidate solutions as size of population and a highest 
number of iterations of 250 in our experiment [23–26].

In the Fig. 1, i is each individual candidate solution 
from set of total number of N solutions.

Analysis of Experimental Result

Execution Cost and Makespan Analysis
Fig. 2 and 3 show our overall comparison of the 

baseline and our suggested HJA. The outcome of our 
experiment demonstrates the resilience of our suggested 
model HJA. HJA is 20.16 %, 16.58 %, 14.04 %, and 
2.88 % less expensive than ABC, CEGA, CLGA, and 
CHGA respectively.

HJA has a 39.92 %, 9.05 %, 13.91 %, and 2.82 % 
shorter average makespan than ABC, CEGA, CLGA, and 
CHGA respectively.

Deadline and Load Balance Analysis
Table 2 illustrates the hit rate and Fig. 4 demonstrates 

balance of load among VMs.
If a processor hasn’t any job, the load index measured 

value as zero, the load index increase according to the job 
assign to a processor. 

 VMCi = PEnum × PEmips. (11)

Table 1. Details of VMs in our experimental environment

VM Types Processing Capacity, GFLOPS ECUs (Cores) Memory, GB Disk, GB Cost /Hour, $

m1.Small 4.4 1(1) 1.7 160 0.04
m1.Large 17.6 4(2) 7.5 850 0.16

m1.Xlarge 35.2 8(4) 15 1690 0.32

c1.Medium 22 5(2) 1.7 350 0.20

c1.Xlarge 88 20(8) 7 1690 0.80

Table 2. Analysis of hit rate under deadline constraint, %

Deadline Algorithm Montage Cybershake LIGO Epigenomics

Hard

CHGA 96.30 94.07 93.10 92.30
ABC 78.10 77.10 79.10 79.12
HJA 95.62 93.00 92.56 90.15
CEGA 92.34 88.48 88.50 83.49
CLGA 95.50 91.48 91.46 88.02

Crunch

CHGA 99.90 99.80 99.74 99.83
ABC 82.08 80.35 81.03 82.97
HJA 99.61 99.82 99.60 99.81
CEGA 99.50 99.62 99.50 99.61
CLGA 99.51 99.76 99.57 99.74

Soft

CHGA 99.89 99.80 99.77 99.81
ABC 99.81 99.89 99.81 99.90
HJA 83.45 82.00 85.78 86.57
CEGA 99.68 99.70 99.61 99.50
CLGA 99.69 99.78 99.70 99.71

https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
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We can calculate the capacity of a VMCi through 
product of the number of processing elements PEnum 
available in VMi and its execution speed in MIPS as 
mentioned in eq. (11). Here, PEnum indicates the number 
of processing elements in a particular VMi.

 VMC = ∑
m

i=1
VMCi, (12)

VMC indicates the execution capacity of all VMs which 
is equal to the sum of all VMCi as mentioned in eq. (12) 
where m is the total number of VMs.

 Li =  . (13)

Load Li is computed using eq. (13). Here, T refers to 
task length which is divided by VMCi, and n is the number 
of total tasks. Task length is expressed as in MI (Million 
Instruction). 

 TL = ∑
m

i=1
Li, (14)

Fig. 1. Flowchart of proposed model
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Total Load (TL) represents the load on all VMs in a given 
data center which is calculated as given in eq. (14), where 
i refers to the number of VMs till m.

 LCpu = . (15)

Load capacity per unit  is computed as given in eq. (15).

 THi = LCpu × VMCi. (16)

The threshold value THi of any VMi is computed as 
mentioned in eq. (16).

For any VMi, if the total load on VMi is less than its 
threshold value THi then it is under-loaded, if it is equal to 
its THi then it is balanced, and if it is greater than its THi 
then it is over-loaded. In our experiment, we examine the 
variation of load on 5 VMs under the baseline algorithms 
as well as our proposed HJA. If load is greater than 
100 percentages that means machine is overloaded; if less 
than 100 percentages, i.e., it is under-loaded.

Fig. 4 illustrates how our HJA outperforms competing 
baseline techniques in terms of load balancing across all 
5 VMs. VM1 has the highest load of 112, and VM3 has the 
lowest load of 95. It indicates that VM3 is under loaded by 

–5 whereas VM1 is overloaded by +12. This demonstrates 
the sturdiness of the HJA model we’ve suggested.

Discussion

Three strategies are used to initialize the population 
in our hybrid module based on JAYA. The remaining 
potential solutions are created using a random method with 
a greedy strategy, and one individual is initialized using 
HEFT-TD, another using the PEFT methodology. These 
methods lower the cost of calculation while simultaneously 
minimizing the makespan. To arrive at a more ideal option, 
the fitness of each candidate is calculated and the JAYA 
technique is used. The overall execution cost is calculated 
if the candidate solution meets the deadline constraint 
requirements. We repeat these procedures until we find 
the optimum solution. The results of our experiment show 
how robust our proposed model HJA is. ABC, CEGA, 
CLGA, and CHGA are each 20.16 %, 16.58 %, 14.04 %, 
and 2.88 % more expensive than HJA. In comparison to 
ABC, CEGA, CLGA, and CHGA, respectively, HJA has 
shorter average makespans of 39.92 %, 9.05 %, 13.9131 %, 
and 2.82 %. In terms of load balancing across all 5 VMs, 
our HJA performs better than competing baseline 

Fig. 2. Analysis of Cost: Montage Workflow (a); Cybershake Workflow (b); LIGO Workflow (c); Epigenomics Workflow (d)
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methodologies. The load on VM1 is the highest at 112, and 
the load on VM3 is the lowest at 95. It shows that VM1 is 
overloaded by +12, whereas VM3 is under-loaded by –5. 
This illustrates how resilient the HJA paradigm we’ve 
proposed is.

Conclusion and Future Direction

We revealed our meta-heuristic, cost-effective, 
load-balanced hybrid evolutionary strategy to schedule 
scientific process. We applied the HEFT-TD and PEFT 
approaches to minimize the execution cost of workflows 
and to balance the load across VMs where configuration 
of VMs is varying. We extensively evaluated four types 
of workflows which are belong to scientific domains with 
varying task sizes within a user-defined deadline, taking 
into account three parameters: makespan, computing cost, 
and load balance. Our experimental findings have shown 
that the suggested HJA algorithm outperforms the ABC, 
CEGA, CLGA, and CHGA in terms of computational cost 
and execution time as well as load balancing across virtual 
machines.

In the future, we would like to address the dynamic 
nature of workflow with varying nature of communication 
bandwidth and communication delays throughout data 
centers using the most recent metaheuristics strategies 
along with machine learning.

Fig. 3. Analysis of Makespan: Montage Workflow (a); Cybershake Workflow (b); LIGO Workflow (c); Epigenomics Workflow (d)

Fig. 4. Balance of load among various VMs
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