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Abstract
Modeling public transport systems from the standpoint of the theory of complex networks is of great importance to 
improve their efficiency and reliability. An important task here is to analyze the roles of nodes and weighted links in 
the network, respectively modeling groups of public transport stops and their linking routes. In previous works, this 
problem was solved based on only topological and geospatial information about the presence of routes between stops 
and their geographical location which led to the problem of uninterpretability of the discovered roles. In this article, 
to solve the problem, the model additionally considers information about the social infrastructure around the stops 
and discovers topological, geospatial, and infrastructure roles jointly. The public transport system is modeled using a 
special weighted network — with node attributes where nodes are non-overlapping groups of stops united by geospatial 
location, node attributes are vectors containing information about the social infrastructure around stops, and weighted 
links integrate information about the distance and number of transfers in routes between stops. To identify the model, 
it is sufficient to use only open urban data on the public transport system. Role discovery for stops is carried out by 
clustering network nodes in accordance with their topological and attributive features. An extended model of the public 
transport system and a new approach to solving the problem of discovering the roles of stops, providing interpretability 
from the topological, geospatial and infrastructural points of view, are proposed. The model was identified on the open 
data of Saint Petersburg about metro stations, trolleybus and bus stops as well as organizations and enterprises around the 
stations and stops. Based on the data, balanced parameters for grouping stops, assigning link weights and constructing 
attribute vectors are found for further use in the role discovery task. The results of the study can be used to identify 
transport and infrastructure shortcomings of real public transport systems which should be considered to improve the 
functioning of these systems in the future.
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Аннотация
Предмет исследования. Моделирование систем общественного транспорта с позиций теории сложных сетей 
имеет большое значение для повышения их эффективности и надежности. При этом важной задачей является 
анализ ролей узлов и взвешенных связей в сети, моделирующих группы остановок общественного транспорта 
и связывающие их маршруты. В настоящее время данная задача решена на основе только топологической и 
геопространственной информации о наличии маршрутов между остановками и их географическом положении. 
Такое ограничение приводит к проблеме неинтерпретируемости выделенных ролей. Для решения проблемы 
определения ролей в сетях в предложенной модели транспорта дополнительно учтена информация о 
социальной инфраструктуре вокруг остановок, а также осуществлено выделение совместно топологических, 
геопространственных и инфраструктурных ролей. Метод. Система общественного транспорта смоделирована 
с помощью специальной взвешенной сети — с атрибутами узлов. При этом узлы — непересекающиеся группы 
остановок, объединенные по геопространственному положению, атрибуты узлов — векторы, содержащие 
сведения о социальной инфраструктуре вокруг остановок, а взвешенные связи интегрируют информацию о 
расстоянии и количестве пересадок в маршрутах между остановками. Для идентификации модели достаточно 
использовать только открытые городские данные о системе общественного транспорта. Выделение ролей 
остановок выполнено путем кластеризации узлов сети в соответствии с их топологическими и атрибутивными 
признаками. Основные результаты. Предложена обобщенная модель системы общественного транспорта. 
Представлен новый подход решения задачи выделения ролей остановок, обеспечивающий интерпретируемость 
с топологической, геопространственной и инфраструктурной точек зрения. Модель идентифицирована на 
открытых данных Санкт-Петербурга об остановках подземного, троллейбусного и автобусного транспорта, 
а также организациях и предприятиях вокруг остановок. На основе данных найдены сбалансированные 
параметры объединения остановок, назначения весов связей и построения векторов атрибутов для последующего 
использования в задаче выделения ролей. Практическая значимость. Результаты исследования могут быть 
использованы для определения транспортных и инфраструктурных недостатков реальных систем общественного 
транспорта, которые следует учитывать для улучшения функционирования этих систем в будущем.
Ключевые слова
сеть с атрибутами узлов, сеть общественного транспорта, выделение ролей, классификация узлов сети, топология 
сети, социальная инфраструктура
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Introduction

In recent years, network theory has found its way into a 
variety of fields of science and technology. A network is a 
collection of nodes some of which are connected by links. 
Being so simply constructed and versatile simultaneously, 
networks become very useful in analyzing, modeling, 
and studying all sorts of complex systems such as online 
and offline social networks, computer and technological 
networks, biological and brain networks, transportation 
networks, etc.

The study of public transportation systems from a 
network theory perspective started rather recently [1, 2]. 
Most works on this topic are aimed at analyzing the 
topological structure of public transportation networks (or 

PTNs) of different cities (e.g., in Poland [2], Hungary [3], 
China [4]) with regard to various modes of transportation 
like bus [2] or subway [5]. Usually, in these cases the 
underlying network is defined with bus stops or subway 
stations as nodes and some rule to assign links between 
these stops and stations. The links are mainly unweighted 
although there are studies considering PTNs as weighted [6] 
(with references therein), where weighted bus PTNs are 
analyzed by means of common network characteristics.

In addition to the PTN topology, it is also usual to 
consider the geospatial information about the nodes in the 
network. A popular approach that utilizes the geography 
of nodes is combining sets of closely situated nodes into 
groups called supernodes [4, 7]. Such approach is motivated 
by the fact that people usually take walks between closely 
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positioned stops to make a connection, instead of sticking 
to a strict path through the network. Therefore, such 
supernode networks are more precise at modeling how 
people use public transport. From another perspective, 
some studies (e.g., [8]) consider PTNs as geospatial 
ones so that the spatial configuration and topology of the 
network are used for the identification of macroscopic and 
mesoscopic statistical network characteristics.

Furthermore, another notable source of information that 
can be used in the public transportation system analysis is 
social infrastructure surrounding stations and stops that, in 
a sense, may provide “semantics” to a PTN. For instance, 
it can be used to analyze and model transport accessibility 
[9] or as an additional component for measuring PTN 
transportation efficiency [7].

As far as we know, the union of weighted geospatial 
networks (supernodes and weighted links) and node 
semantics (social infrastructure in our case) have not been 
considered in the PTN studies (as the so-called node-
attributed networks), although it may certainly enrich our 
knowledge about processes of PTN formation. This is 
confirmed by the case of node-attributed networks modeling 
online social networks where not only connections between 
social actors (network topology) but also actors’ content 
(profile information, posts, etc.) are taken into account 
within different tasks such as community detection, link 
prediction, outlier identification, etc., e.g., [10–12]).

To get closer to the objective of our study, let us also 
mention that in the recent times role discovery (especially 
topological feature-based [13]) has become a popular topic, 
most notably in the domain of non-attributed social network 
analysis [13–19]. In the network context, roles refer to 
clusters or classes of nodes where the nodes from the 
same cluster are structurally similar to each other in some 
way. The problem of role discovery is related to another 
network clustering problem called community detection in 
non-attributed [20–22] and node-attributed [10–12] social 
networks where the clustering mainly aims to separate 
densely interconnected parts (called communities) of the 
network by means of network topology or both network 
topology and attributes (semantics). By contrast, role 
discovery aims to distinguish between various structural 
and other characteristics of different nodes. For instance, 
in a social network there can be multiple communities 
of people, and in each community there are people of 
various roles, i.e., leaders, influencers, etc., with possible 
transitions between roles and interaction preferences (see 
the recent studies on the topic, e.g., in [23–25]). Let us 
here specifically mention the study [26] as it seems the 
first attempt to enrich role discovery methodology in social 
online networks by the content generated by social actors 
(“semantics”). Although the authors do not explicitly model 
online social networks as node-attributed networks, the 
experimental results in [26] show that the semantics helps 
to identify social network roles more effectively.

In this study, we consider the experience of studies in 
social network analysis connected with role discovery in 
non- and node-attributed social networks to model and 
analyze PTNs. Furthermore, we are motivated by the 
survey [27] where PTNs are considered from the network 
perspective of complexity, static and dynamic resilience, 

and it is emphasized that the study of PTN node roles (in 
particular, based on topological features — besides the 
well-known hubs, for example) is still limited although may 
offer useful insights into identifying the most critical nodes 
of PTNs. Namely, we propose an approach for solving the 
novel problem of role discovery for weighted node-attributed 
PTNs that can discover roles both in terms of network 
topology and node infrastructural attributes — semantics. In 
short, the main contributions of this paper are the following:
1. We model a PTN as a weighted node-attributed 

network where nodes are supernodes, i.e., groups 
of public transport stops and stations grouped with 
respect to their geospatial position, and node attributes 
are numerical vectors storing information about social 
infrastructure around the supernodes. The weighted 
links in the network integrate information about the 
travelling distance and the number of hops in the 
transportation routes between the supernodes.

2. We point out some of the common misconceptions 
and errors in previous analyses of the PTNs which 
we believe stem from the misunderstanding of some 
interpretations of different PTN models.

3. We propose a new approach for role discovery in 
weighted node-attributed networks. This approach uses 
semantics (i.e., node attributes) as well as structure 
(i.e., network topology). In the context of PTNs, this 
approach allows to discover meaningful roles in terms 
of both topological structure of stops and stations and 
social infrastructure around them. At the same time, 
the approach is not topic-specific and can be applied 
in other domains like social network analysis.

4. We test the framework on the newly collected open 
public transportation data of Saint Petersburg, Russia. 
It is shown to be capable of discovering different roles 
of public transport stops in terms of both structure 
and social infrastructure and extracting useful 
information about the overall PTN’s transport and 
social infrastructure efficiency.

Let us additionally mention that with respect to previous 
studies, we
— define the supernodes formally as equivalent classes 

to avoid ambiguity, with the choice of reasonable 
thresholds; 

— choose a trade-off between hop-based and distance-
based routes to balance between the travelling distance 
and the number of hops corresponding to a given route 
between two nodes in a PTN; 

— define the problem of social infrastructure role 
discovery and propose a procedure for constructing 
social infrastructure attributes in our model; 

— scrupulously select and analyze commonly used 
topological features of network nodes in the context of 
PTN models.

Related work

Modeling public transportation networks. The study 
of PTNs using network (graph1) theory began in [1, 2]. 

1 Here and throughout the paper we use the terms network and 
graph interchangeably.
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The main aim of such studies is usually to analyze the 
topology of the given city’s PTN in order to extract useful 
information about the state and structure of that city’s 
public transportation system.

The two most popular ways of constructing a PTN (both 
were introduced in [1]) are L-space and P-space models. 
In both cases the nodes of the network represent various 
public transportation stops and stations. What these models 
differ in is the way of assigning the links between the 
nodes. According to the L-space model, a link is assigned 
between two nodes that correspond to two consecutive 
stops on some route. Thus, the topology of an L-space 
model is visually similar to a normal scheme of a public 
transportation system that one can find on an information 
stand near a bus stop. By contrast, in the P-space model, 
a link is put between all stops that are connected by some 
route (not just the consecutive ones). Therefore, in the 
P-space model and link are interpreted as a possibility 
of travelling directly between two nodes. (Note that as a 
result, the P-space model is normally much denser than 
the corresponding L-space model.) The difference between 
L-space and P-space is explained in Fig. 1.

These models have been used in virtually all the papers 
dealing with PTNs and were applied to analyze various 
cities in Poland [2], Hungary [3], China [4], among others. 
Such analysis is especially easy to conduct since the data 
needed to build a basic PTN is nowadays available publicly 
for most big cities around the world (Fig. 2). Usually, 
authors aim to check some graph-theoretic and network-
theoretic properties of the constructed graphs, i.e., degree 
distribution, clustering coefficient, scale-free property, and 
so on. A comprehensive comparison of such properties 
between different cities around the world can be found in 
[28] along with interpretations of these properties in a sense 
of public transportation quality.

Another natural source of information for constructing 
a PTN is the geospacial component, i.e., the coordinates 
of the stops. As we mentioned previously, a conventional 
PTN (with separate stops as nodes) does not account 

for passengers’ possibility to make walking connections 
between closely situated stops while moving around a city. 
Additionally, such approaches are not capable of combining 
different modes of transportation (like bus, trolleybus, 
tramway, and subway) in a single network. To overcome 
these issues, one can consider groups of nearby stops and 
stations as supernodes (Fig. 3), thus transforming the 
conventional node structure into the supernode structure 
(note that the node links are naturally transformed into 
the supernode links given the defined node-to-supernode 
mapping). Such approach was used in [4, 7].

To further improve a public transportation model, one 
can also assign link weights, see, e.g., [4, 6, 7]. In [7], the 
authors propose to assign weights to the links of the L-space 
network by counting the number of routes operating of each 
given link. Such weights can therefore represent the amount 
of passenger flow via each link. By contrast, the authors 
of [4] propose to assign link weights (both in L-space and 
P-space) as the minimal travel distance between the nodes 
along the corresponding route. Such approach is more 
suitable in terms of determining the optimal routes and 
connections while travelling around a city.

It should be noted that the choice of the network model 
as well as the method of assigning link weights greatly 
influences what one can then do with the resulting network 

Fig. 1. Difference between L-space (a) and P-space (b)

Fig. 2. The map1 of area surrounding Saint Petersburg (a) and the city center (b), indicating stops and routes of different modes 
of transportation

1 The maps are generated by Cartopy, a Python open package. Available at:  https://scitools.org.uk/cartopy (accessed 26.09.2022).

https://scitools.org.uk/cartopy
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model. For instance, when using the L-space model (as 
it was done in [7]), one should be careful in interpreting 
the shortest paths through the network, as these generally 
do not correspond to how passengers choose to travel in 
practice, since, for example, the number of connections 
is not minimized when using such paths while normally 
a passenger would want to make as little connections 
as possible (Fig. 4). Such misinterpretation of shortest 
paths may lead to subsequent misinterpretation of various 
centrality measures, such as betweenness centrality and 
closeness centrality.

The P-space seems to be better suited for such shortest 
path analysis although choosing the method of link weight 
assignment is still very important here. Assigning equal 
weights to links resolves the issue of minimizing the 
number of connections since in this case a shortest path 
through the P-space network is precisely the path requiring 
the minimal number of connections. At the same time, 
such shortest paths can be excessively long in terms of 
travelling distance. However, setting travelling distances as 
link weights (as in [4]) brings back the issue of the number 
of connections since a shortest path in terms of travelling 
distance can involve a suboptimal number of connections. 
Therefore, an intermediate approach is needed, taking into 
account both the number of hops in a shortest path, and the 
travelling distance corresponding to it. Such approach is 
used in our paper (Fig. 5).

There also exist methods of assigning link weights 
based on the flow of passengers during a certain part of the 
day [29, 30] resulting in a dynamic structure of the PTN. 
It should be mentioned, however, that such data is usually 

quite hard to obtain while in this paper we aim to construct 
the model using only the openly available data.

Finally, social infrastructure is also an available and 
important source of information when constructing a PTN 
since it sheds light on why people actually travel to a 
given destination (there can be, for instance, a school, a 
hospital, or a sightseeing spot nearby). The infrastructural 
component was used in [7] where the authors assigned 
node weights depending on a number of factors, such as 
the number of social infrastructure objects of certain types 
(recreation, emergency, education, and transportation), the 
total number of passengers accessing the node, etc. All 
these factors were then weighted producing a single value 
which was chosen as the node weight.

This method is useful when trying to access importance 
(as a unidimensional characteristic) of each node from the 
infrastructural standpoint. At the same time it does not 
capture any information about the role of the node, i.e., 
its unique infrastructural characteristics. Therefore, in this 
paper we adopt a more general multidimensional approach 
assigning not weights but attribute vectors to nodes.

Role discovery in public transportation and other 
networks. The main idea behind the role discovery is to 
group nodes by their connectivity patterns where each 
group represents some topological role, such as hub, bridge, 
near-clique, etc. Topological roles indicate which functions 
nodes serve in the network [13].

Initially role discovery was the point of interest in 
sociology, used to study the interactions between social 
actors and assign roles to actors, but networks in these 
studies were very small [31, 32]. In general, role discovery 
can be applied to any network, and the main difference 
across networks will be in the interpretation of roles. Lately, 
this concept was studied and implemented for biological 
networks [33], web graphs [34], and many others [35].

Fig. 3. The map1 of Vasileostrovsky District in Saint Petersburg, 
indicating stops and routes for different modes of transportation 

as well as the supernodes (groups of nearby stops)

1 The maps are generated by Cartopy, a Python open package. 
Available at: https://scitools.org.uk/cartopy (accessed 26.09.2022).

Fig. 4. In the L-space model, all consequent stops in each route 
are connected with a link. As a result, a shortest path in the 

L-space graph generally does not indicate an optimal route for 
a passenger. For instance, while travelling from point A to point 
B, the optimal travelling route is route 1 while the shortest path 

through the graph involves changing to route 2 midway

Fig. 5. In the P-space model, both hop-based and distance-
based link weights result in shortest paths that are not indicative 

of optimal routes for passengers. When using hop-based link 
weights (i.e., each link having weight 1), a shortest path is the 

one with the least number of connections but it can be arbitrarily 
long in distance. The contrary holds for distance-based weights: 
a shortest path is indeed shortest in distance but it can involve 
arbitrarily many connections in the process. A fused approach 
(considering both distance and hops) mitigates such problems

https://scitools.org.uk/cartopy
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The process of role discovery usually consists of several 
steps. Firstly, centrality measures (or other chosen features) 
are chosen and calculated for every node in the network. 
Following this, nodes are clustered by using vectors of 
centrality measures. As a result, nodes are grouped by 
similarity among centrality measures which shows how 
similar nodes are in terms of topology.

To the best of our knowledge, no purposeful attempts 
have been made to state and solve the problem of role 
discovery in the above-mentioned sense for PTNs. Indeed, 
the survey [27] (where PTNs are considered from the 
network perspective of complexity, static and dynamic 
resilience) emphasizes that the study of PTN node roles 
(in particular, based on topological features — besides the 
well-known hubs, for example) is still limited although 
may offer useful insights into identifying the most critical 
nodes of PTNs.

Nevertheless, we can mention, e.g., the study [8], where 
the geospatial configuration of a PTN is analyzed and some 
conclusions about the roles of the PTN nodes (by means 
of importance) are made. Furthermore, the topic-related 
work [36] aims to detect and analyze node clusters in the 
intercity transportation networks. The authors propose 
using a distance measure based on the K shortest paths 
between a pair of nodes to measure the proximity between 
all node pairs, and then use the hierarchical clustering 
method in order to obtain the clusters. The resulting 
clusters correspond to the groups of nodes that are in close 
proximity of each other. However, this work is more in 
line with the problem of community detection than role 
discovery since these clusters do not reflect different roles 
of these nodes in the network.

Another notable attempt at geospatial PTN clustering 
is the work [37] the authors of which introduce a 
problem of node-attributed spatial graph partitioning. 
This problem aims at obtaining clusters of nodes that are 
densely interconnected, homogeneous with respect to their 
attributes and also meet a certain size constraint in terms 
of the geographical coordinates of the nodes. Even though 
this problem can indeed be formulated in terms of PTNs 
and also accommodate the presence of node-attributed 
social infrastructure vectors; it is however more in line with 
community detection in node-attributed networks [10–12] 
rather than role discovery [13] since in general the nodes 
of a certain role (like transition hubs, for instance) do not 
need to be in close proximity of each other.

One should note that the richest experience on the 
role discovery task is nevertheless in the field of social 
network analysis where non- and node-attributed networks 
are deeply studied within the task [13–19]. One can find 
a comprehensive overview of role discovery approaches 
in [13] where graph-based, feature-based, and hybrid 
definitions of roles and methods for their discovery from 
social network data are discussed. Let us also mention 
several further studies on the topic.

In [16], a novel role discovery approach is proposed for 
extracting soft roles of social actors with similar behavioral 
and functional characteristics in online social networks. 
The study [24] is focused on the problem of research role 
identification (i.e., principal investigator, sub-investigator 
or research staff) for large research institutes in which 

similar yet separated teams coexist. Furthermore, [25] states 
and proposes a framework for solving the multiple-role 
discovery task and conduct an experimental study of their 
framework on several real-world online document/social 
networks. Finally, let us mention the study [26] that seems 
the first attempt to enrich role discovery methodology in 
social online networks by the content generated by social 
actors, e.g., posts. In the paper, a novel method which 
integrates both user behavior and his/her content to identify 
roles is proposed. Although the authors do not explicitly 
model online social networks as node-attributed networks, 
the experimental results in [26] show that the semantics 
helps to identify various roles more effectively and to get 
more insights on how the network is functioning.

As we have already mentioned, in our study we take 
into account the experience of studies in social network 
analysis connected with role discovery in non- and node-
attributed social networks to model and analyze PTNs.

Description of the model and the role discovery task

The model of a node-attributed public transportation 
network. We now proceed to describing the node-attributed 
PTN model that we are going to use for role discovery later. 
The data needed to construct such model will be described 
in detail in a future work, but for now we note that only 
the general public transportation and social infrastructure 
data, which is available for the majority of cities around 
the world, is needed here. Below, we illustrate our model 
with the PTN data for Saint Petersburg, Russia1 (will be 
described and studied in detail in the future work) in order 
the make it clearer for the reader.

Formally, the model can be defined as a tuple:

 G = (V, E, A),

where V is the set of nodes, E ⊆ V × V × ℝ is the set of 
undirected weighted links, and A: V → ℝn is a mapping that 
defines the set of node-attributed vectors. In what follows, 
we will define each component of this graph.

Supernodes (nodes of the node-attributed network). 
The first step is to combine the public transportation stops 
and stations into supernodes, i.e., groups of nodes that 
are located close to each other, thus making it possible 
to make a transition between them on foot. Suppose that  
S = {s1, …, sN} is the set of public transportation stops 
(N in total). To combine them into supernodes, we first 
need to calculate the pairwise distances between each 
pair si, sj ∈ S. This can be done using their geographical 
coordinates. The distances are calculated using the well-
known Haversine formula:

 d(si, sj) = 2r0arcsin√Θ(φ, λ), (1)

where 

 Θ(φ, λ) = sin2   + cos φi cos φj sin2 ,

1 The data along with all preprocessing and analysis 
procedures is available in the Github repository. Available at: 
https://github.com/AlgoMathITMO/public-transport-network 
(accessed 26.09.2022).

https://github.com/AlgoMathITMO/public-transport-network
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d(si, sj) is the distance between stops si and sj; r0 is the 
radius of Earth; φl, λl, l ∈ {i, j}, are latitudes and longitudes 
of the two points, respectively.

The most common way of grouping the closely situated 
stops is by using a distance threshold [4, 7]: all stops that 
are closer to each other than some constant d0 are added 
to a common supernode. Since this construction is not an 
equivalence relation, in order to define the supernodes 
correctly, we also close this relation transitively. When this 
is done, the supernodes are defined as equivalence classes 
with respect to this closed relation, i.e., two stops si, sj ∈ S 
belong to the same supernode ŝ if and only if 

  ∃n1 = si, n2, …, nK = sj ∈ S:

 ∀k < K d(nk, nk+1) ≤ d0.

We denote the set of all supernodes as Ŝ and use it as 
the set of nodes V of the graph G. In some practical cases 
we will also need coordinates of supernodes. For these 
cases we define coordinates of a supernode as simply the 
mean of latitude and longitude over all stops belonging to 
the given supernode.

Note that in general there can be nodes inside a single 
supernode with distance greater than d0, provided there is 
a sequence of nodes 

 n1 = si, n2, …, nK = sj ∈ S,

such that each pair nk, nk+1 is closer than d0. This can 
potentially result in some supernodes being arbitrarily 
large. This issue cannot be resolved in a symmetrical 
way, and we have no choice but to allow it (even though 
it has not been discussed in any of the previous papers, 
we assume that the authors of those papers also faced 
this issue), but we stress that an appropriate value of d0 
should therefore be chosen carefully, taking into account 
the sizes of the resulting supernodes (Fig. 6). Some of the 
characteristics of supernodes that can be considered here 
is the supernode size (i.e., the number of nodes inside it) or 
the supernode diameter (i.e., the maximal distance between 
two nodes inside it).

For instance, in Fig. 6 we see that when d0 > 0.1 
(i.e., the distance of 100 meters), the maximal supernode 
diameter gets beyond 1 km which is not really acceptable 
as a walking distance between the stops. Therefore, for our 
study we take d0 = 0.1.

Weighted links of the node-attributed network. The 
second step is to define the set of links E. This is done 
traditionally using the information about different routes 
that comprise the public transportation system. Suppose 
that R is the set of all public transportation routes where 
each route is defined as a sequence of stops from S: 

 r = (si1, …, sik), 

where k is the route length, and each sij is a stop from S. 
Since each stop s ∈ S is mapped uniquely to a supernode 
ŝ ∈ Ŝ, these routes can be easily converted into the 
sequences of supernodes: 

 r = (ŝi1, …, ŝil), 

where l ≤ k and ŝij ∈ Ŝ.
Recall that in the P-space model, links are defined as 

all pairs of stops (not necessarily consecutive) on all the 
routes, i.e., 

 {(si, sj) ∈ S2|∃r ∈ R: si, sj ∈ r}.

A P-space link, therefore, means that there exists a route 
connecting the given pair of stops.

In order to assign weights to these links, consider an 
arbitrary route r = (si1, …, sik) and take two arbitrary stops 
sij, sil ∈ r, ij < il. Since there exists a sub-route 

 (sij, sij+1, … , sil) ⊆ r,

we can define a route distance between sij and sil with 
respect to the route r as follows: 

 rdr(sij, sil) = ∑
l–1

k=j
d(sik, sik+1),

Fig. 6. Maximal supernode size (a) and diameter (b) for different values of d0. Even for relatively small values (d0 > 0.15) these 
characteristics grow quite rapidly resulting in some supernodes having diameter as large as 2 km and more
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where d is the distance defined in eq. (1). Notice that there 
can be several routes connecting the same pair of stops 
si, sj, and the corresponding route distances rdr(si, sj) can 
vary. We thus define the route distance between two nodes 
si, sj as the minimal route distance between them across all 
the available routes: 

 rd(si, sj) = min
r∈R

 rdr(si, sj).

Route distances were used as link weights in [4], but, 
as it was discussed above, such approach to assign link 
weights brings up an issue that a shortest path between 
two nodes with respect to route distances (being optimal in 
terms of travel distance) can be suboptimal in terms of the 
number of connections made while travelling via this path. 
Using unweighted links solves the problem of minimizing 
the number of connections but can result in shortest paths 
that are inadequate in terms of travelling distance.

This issue is illustrated in Fig. 7. In both cases we have 
two routes between the same pair of stops, and route A is 
obtained by minimizing the travel distance, while route 
B is obtained by minimizing the number of hops. In the 
first case (Fig. 7, a) we see that route B, while having less 
transfers than route A, is about 10 times longer than the 
latter, therefore it is much less convenient for a passenger. 
The second case (Fig. 7, b) is the opposite: route A is 
shorter (albeit marginally) than route B, but has 10 times 
more transfers, and it is very unlikely that a passenger will 
decide to take route A over route B.

Therefore, an intermediate approach should be adopted. 
Here we propose the following weighing scheme where 
weight w(si, sj) is: 

 w(si, sj) = αrd(si, sj) + 1 – α. 

Here α is the dimensionless coefficient, the term 1 – α 
can be thought of as multiplied by a ‘hop-weight’ of a link 
which is always equal to 1. This approach makes it possible 

to balance between the travelling distance and the number 
of hops corresponding to a given path between two nodes. 
We use these values as link weights E in our model: 

 E = {(ŝ1, ŝ2, w(ŝ1, ŝ2))|ŝ1, ŝ2 ∈ Ŝ}.

In order to choose an appropriate dimensionless value 
of α, consider the two borderline cases, namely α = 0 and 
α = 1. In the first case we get an unweighted graph (each 
link having weight 1), thus the shortest paths have the 
minimal possible number of hops. For an arbitrary pair of 
nodes si, sj ∈ S denote such minimal number of hops as 
Hmin(si, sj). In the latter case (i.e., α = 1) we get a graph 
weighted with geographical distances along the links, 
thus the shortest paths in this case are minimal in terms of 
travel distance. Denote these minimal travel distances as 
Dmin(si, sj), si, sj ∈ S.

Now, for an arbitrary α ∈ (0,1) notice the shortest 
paths are sub-optimal in terms of both the number of hops 
(denote these as Hα(si, sj)) and travel distance (denote these 
as Hα(si, sj)). Therefore, we can consider mean percentage 
difference between these values and their corresponding 
minima, i.e., 

 MPDH(α) =  ∑
u,v∈V

 

for hops, and 

 MPDD(α) =  ∑
u,v∈V

 

for distances.
These values can be used to determine the optimal value 

of α. For instance, in Fig. 8 we see that for α = 0.2 both 
MPDH and MPDD are less than 10 % which means that on 
average both the number of hops and travel distance are no 
more than 10 % greater than their corresponding minima.

Fig. 7. Minimizing the number of hops can lead to excessively long routes (a), while minimizing the travel distance can lead to routes 
requiring an excessive number of transfers (b)1

1 The maps are generated by Cartopy, a Python open package. Available at: https://scitools.org.uk/cartopy (accessed 26.09.2022).

https://scitools.org.uk/cartopy
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Attribute vectors of the node-attributed network. 
Finally, we want to assign each node ŝ ∈ Ŝ a multivariate 
value A(ŝ) ∈ ℝn describing it in terms of social 
infrastructure surrounding it. This can be done using 
the information about various infrastructural objects 
I = {i1, …, im} around the city. Each object ij is a tuple 
(φ, λ, t), where φ, λ are latitude and longitude of the object, 
and t is a categorical marker of the type of this object (i.e., 
be it a shop, a hospital, a sightseeing place, etc.). The set 
of different infrastructural object types T = {t1, …, tn} is 
usually pre-defined.

To construct node attributes, we first assign each 
infrastructural object to some stop. The most natural way 
of doing this is to assign each infrastructural object to a stop 
that is closest to it. We note however that such approach 
is not the most accurate since there are generally multiple 
ways of getting to a given destination (for instance, one 
can take multiple routes to work or school), and these can 
involve getting off a bus at different stops. To account 
for this, we propose using a distance window d1 when 
assigning infrastructural objects to stops. To do so, take an 
infrastructural object i and suppose that dmin is the minimal 
distance from i to a stop. We then assign the object i to all 
stops s such that 

 d(i, s) ≤ dmin + d1,

where d(a, b) is the distance between geographical points 
eq. (1). In this study we take d1 = 0.2, i.e., the distance of 
200 meters (Fig. 8).

Denote IS ⊆ I as the set of all infrastructural objects 
assigned to a stop s. When this is done, we construct a 
multivariate value vs corresponding to the given stop s 
by counting the infrastructural objects of different types 
assigned to this stop, i.e., vs ∈ ℕn and 

 (vs)j = #{i ∈ Is|i = (φ, λ, t), t = tj}.

These values are used as note attributes in our 
network model, i.e., A: ŝ ↦ vŝ. Such attributes reflect 
the characteristics of each node in terms of what kind of 
social infrastructure this node is surrounded by (Fig. 9). 
The definition of our public transportation model is thus 
complete.

Role discovery task for the node-attributed public 
transportation network. The task of role discovery 
originated in the field of social network analysis, but has 
found its way into a variety of different domains of science. 
This task usually involves clustering of network nodes, 
not in a sense of connectivity structure (the so-called 
community detection), but rather in terms of topological 
features of nodes (for instance, various centrality measures, 
more on that below). Thus, the goal is to obtain clusters 
not of densely connected nodes, but rather of nodes having 
similar structural characteristics.

The basic approach to this task is therefore to extract 
some features of the network nodes and then use machine 
learning algorithms (i.e., KMeans [38]) to extract clusters 
based on these features. Even though originally only 
topological features were used in this approach, the basic 
framework can naturally be extended to include also 
node-attributed vectors (that too can be used as a separate 
set of node features). One can then combine these two 
sets of features in some way and perform clustering 
simultaneously, or alternatively obtain two separate 
clustering (with respect to topological features and node 
attributes) and then analyze their relationship, for instance, 
using a contingency table.

In this theoretical study we adopt the latter approach, 
i.e., we perform separate clustering with respect to 
topological features (derived from the network structure) 
and infrastructure features (using the supernode attributes) 
and then compare the two.

The reason for this is that these two feature sets 
have their own interpretations, thus interpreting clusters 
with respect to only one of the feature sets is much more 
intuitive than if one uses, for instance, concatenated 
features.

Conclusions

In this paper, we introduced a novel weighted node-
attributed PTN model (using information about a city’s 
social infrastructure to construct the node attributes) and 
illustrated its construction with the data collected about 
public transport stops and stations of Saint Petersburg, 
Russia. Moreover, we pointed out some of the common 
misconceptions and errors in previous analyses of the PTNs 

Fig. 8. Mean percentage difference of hops (Eq. 9) and distance 
(Eq. 10) for different values of α. When α ≈ 0.2, MPD is less 

than 10 % for both hops and distance

Fig. 9. The map1 of Vasileostrovsky District in Saint Petersburg 
indicating supernodes and various infrastructural objects 

attached to them

1 The maps are generated by Cartopy, a Python open package. 
Available at: https://scitools.org.uk/cartopy (accessed 26.09.2022).

https://scitools.org.uk/cartopy
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which we believe stem from the misunderstanding of some 
interpretations of different PTN models.

It is also worth mentioning that the most common 
method of constructing supernodes (i.e., just grouping 
together all the closely located stops) is not without 
drawbacks. Additional research should be conducted 
regarding this problem.

Furthermore, we proposed an approach for solving the 
novel problem of role discovery in a PTN. The approach 
uses both structural (i.e., network topology) and semantic 
(i.e., social infrastructure around the nodes) aspects of 

a node-attributed PTN. The approach aims at extracting 
useful information about the properties and overall 
efficiency of a city’s public transportation system from both 
the structural and infrastructure standpoints. In general, 
the proposed approach to role discovery in node-attributed 
networks can be applied beyond the scope of PTNs and 
to any other kind of network (e.g., social, biological, 
technical, etc.), given the appropriate set of node attributes.

Recall that a companion study to this one will be the 
next one where the model and the approach are applied to 
discover roles in the PTN of Saint Petersburg, Russia.

References
1. Sen P., Dasgupta S., Chatterjee A., Sreeram P.A., Mukherjee G., 

Manna S.S. Small-world properties of the indian railway network. 
Physical Review E, 2003, vol. 67, no. 3, pp. 036106. https://doi.
org/10.1103/physreve.67.036106

2. Sienkiewicz J., Hołyst J. Statistical analysis of 22 public transport 
networks in Poland. Physical Review E, 2005, vol. 72, no. 4, 
pp. 046127. https://doi.org/10.1103/physreve.72.046127

3. Haznagy A., Fi I., London A., Nemeth T. Complex network analysis 
of public transportation networks: A comprehensive study. Proc. of 
the 2015 International Conference on Models and Technologies for 
Intelligent Transportation Systems (MT-ITS), 2015, pp. 371–378. 
https://doi.org/10.1109/mtits.2015.7223282

4. Yang X.-H., Chen G., Chen S.-Y., Wang W.-L., Wang L. Study on 
some bus transport networks in china with considering spatial 
characteristics. Transportation Research Part A: Policy and Practice, 
2014, vol. 69, no. 1, pp. 1–10. https://doi.org/10.1016/j.
tra.2014.08.004

5. Zhang J., Zhao M., Liu H., Xu X. Networked characteristics of the 
urban rail transit networks. Physica A: Statistical Mechanics and its 
Applications, 2013, vol. 392, no. 6, pp. 1538–1546. https://doi.
org/10.1016/j.physa.2012.11.036

6. Wang L.-N., Wang K., Shen J.-L. Weighted complex networks in 
urban public transportation: Modeling and testing. Physica A: 
Statistical Mechanics and its Applications, 2020, vol. 545, 
pp. 123498. https://doi.org/10.1016/j.physa.2019.123498

7. Shanmukhappa T., Ho I.W.-H., Chi K.T. Spatial analysis of bus 
transport networks using network theory. Physica A: Statistical 
Mechanics and its Applications, 2018, vol. 502, pp. 295–314. https://
doi.org/10.1016/j.physa.2018.02.111

8. Wang Y., Deng Y., Ren F., Zhu R., Wang P., Du T., Du Q. Analysing 
the spatial configuration of urban bus networks based on the 
geospatial network analysis method. Cities, 2020, vol. 96, pp. 102406. 
https://doi.org/10.1016/j.cities.2019.102406

9. Lantseva A., Ivanov S. Modeling transport accessibility with open 
data: Case study of st. Petersburg. Procedia Computer Science, 2016, 
vol. 101, pp. 197–206. https://doi.org/10.1016/j.procs.2016.11.024

10. Bothorel C., Cruz J., Magnani M., Micenková B. Clustering attributed 
graphs: Models, measures and methods. Network Science, 2015, 
vol. 3, no. 3, pp. 408–444. https://doi.org/10.1017/nws.2015.9

11. Chunaev P. Community detection in node-attributed social networks: 
A survey. Computer Science Review, 2020, vol. 37, pp. 100286. 
https://doi.org/10.1016/j.cosrev.2020.100286

12. Atzmueller M., Günnemann S., Zimmermann A. Mining communities 
and their descriptions on attributed graphs: a survey. Data Mining and 
Knowledge Discovery, 2021, vol. 35, no. 3, pp. 661–687. https://doi.
org/10.1007/s10618-021-00741-z

13. Rossi R.A., Ahmed N.K. Role discovery in networks. IEEE 
Transactions on Knowledge and Data Engineering, 2015, vol. 27, 
no. 4, pp. 1112–1131. https://doi.org/10.1109/tkde.2014.2349913

14. Ahmed N.K., Rossi R.A., Willke T.L., Zhou R. Revisiting role 
discovery in networks: From node to edge roles. ArXiv, 2016, 
arXiv:1610.00844. https://doi.org/10.48550/arXiv.1610.00844

15. Martínez V., Berzal F., Cubero J.-C. An automorphic distance metric 
and its application to node embedding for role mining. Complexity, 
2021, vol. 2021, pp. 1–17. https://doi.org/10.1155/2021/5571006

16. Gupte P.V., Ravindran B., Parthasarathy S. Role discovery in graphs 
using global features: Algorithms, applications and a novel evaluation 

Литература
1. Sen P., Dasgupta S., Chatterjee A., Sreeram P.A., Mukherjee G., 

Manna S.S. Small-world properties of the indian railway network // 
Physical Review E. 2003. V. 67. N 3. P. 036106. https://doi.
org/10.1103/physreve.67.036106

2. Sienkiewicz J., Hołyst J. Statistical analysis of 22 public transport 
networks in Poland // Physical Review E. 2005. V. 72. N 4. P. 046127. 
https://doi.org/10.1103/physreve.72.046127

3. Haznagy A., Fi I., London A., Nemeth T. Complex network analysis 
of public transportation networks: A comprehensive study // Proc. of 
the 2015 International Conference on Models and Technologies for 
Intelligent Transportation Systems (MT-ITS). 2015. P. 371–378. 
https://doi.org/10.1109/mtits.2015.7223282

4. Yang X.-H., Chen G., Chen S.-Y., Wang W.-L., Wang L. Study on 
some bus transport networks in china with considering spatial 
characteristics // Transportation Research Part A: Policy and Practice. 
2014. V. 69. N 1. P. 1–10. https://doi.org/10.1016/j.tra.2014.08.004

5. Zhang J., Zhao M., Liu H., Xu X. Networked characteristics of the 
urban rail transit networks // Physica A: Statistical Mechanics and its 
Applications. 2013. V. 392. N 6. P. 1538–1546. https://doi.
org/10.1016/j.physa.2012.11.036

6. Wang L.-N., Wang K., Shen J.-L. Weighted complex networks in 
urban public transportation: Modeling and testing // Physica A: 
Statistical Mechanics and its Applications. 2020. V. 545. P. 123498. 
https://doi.org/10.1016/j.physa.2019.123498

7. Shanmukhappa T., Ho I.W.-H., Chi K.T. Spatial analysis of bus 
transport networks using network theory // Physica A: Statistical 
Mechanics and its Applications. 2018. V. 502. P. 295–314. https://doi.
org/10.1016/j.physa.2018.02.111

8. Wang Y., Deng Y., Ren F., Zhu R., Wang P., Du T., Du Q. Analysing 
the spatial configuration of urban bus networks based on the 
geospatial network analysis method // Cities. 2020. V. 96. P. 102406. 
https://doi.org/10.1016/j.cities.2019.102406

9. Lantseva A., Ivanov S. Modeling transport accessibility with open 
data: Case study of st. Petersburg // Procedia Computer Science. 2016. 
V. 101. P. 197–206. https://doi.org/10.1016/j.procs.2016.11.024

10. Bothorel C., Cruz J., Magnani M., Micenková B. Clustering attributed 
graphs: Models, measures and methods // Network Science. 2015. 
V. 3. N 3. P. 408–444. https://doi.org/10.1017/nws.2015.9

11. Chunaev P. Community detection in node-attributed social networks: 
A survey // Computer Science Review. 2020. V. 37. P. 100286. https://
doi.org/10.1016/j.cosrev.2020.100286

12. Atzmueller M., Günnemann S., Zimmermann A. Mining communities 
and their descriptions on attributed graphs: a survey // Data Mining 
and Knowledge Discovery. 2021. V. 35. N 3. P. 661–687. https://doi.
org/10.1007/s10618-021-00741-z

13. Rossi R.A., Ahmed N.K. Role discovery in networks // IEEE 
Transactions on Knowledge and Data Engineering. 2015. V. 27. N 4. 
P. 1112–1131. https://doi.org/10.1109/tkde.2014.2349913

14. Ahmed N.K., Rossi R.A., Willke T.L., Zhou R. Revisiting role 
discovery in networks: From node to edge roles // ArXiv. 2016. 
arXiv:1610.00844. https://doi.org/10.48550/arXiv.1610.00844

15. Martínez V., Berzal F., Cubero J.-C. An automorphic distance metric 
and its application to node embedding for role mining // Complexity. 
2021. V. 2021. P. 1–17. https://doi.org/10.1155/2021/5571006

16. Gupte P.V., Ravindran B., Parthasarathy S. Role discovery in graphs 
using global features: Algorithms, applications and a novel evaluation 
strategy // Proc. of the IEEE 33rd International Conference on Data 

https://doi.org/10.1103/physreve.67.036106
https://doi.org/10.1103/physreve.67.036106
https://doi.org/10.1103/physreve.72.046127
https://doi.org/10.1109/mtits.2015.7223282
https://doi.org/10.1016/j.tra.2014.08.004
https://doi.org/10.1016/j.tra.2014.08.004
https://doi.org/10.1016/j.physa.2012.11.036
https://doi.org/10.1016/j.physa.2012.11.036
https://doi.org/10.1016/j.physa.2019.123498
https://doi.org/10.1016/j.physa.2018.02.111
https://doi.org/10.1016/j.physa.2018.02.111
https://doi.org/10.1016/j.cities.2019.102406
https://doi.org/10.1016/j.procs.2016.11.024
https://doi.org/10.1017/nws.2015.9
https://doi.org/10.1016/j.cosrev.2020.100286
https://doi.org/10.1007/s10618-021-00741-z
https://doi.org/10.1007/s10618-021-00741-z
https://doi.org/10.1109/tkde.2014.2349913
https://doi.org/10.48550/arXiv.1610.00844
https://doi.org/10.1155/2021/5571006
https://doi.org/10.1103/physreve.67.036106
https://doi.org/10.1103/physreve.67.036106
https://doi.org/10.1103/physreve.72.046127
https://doi.org/10.1109/mtits.2015.7223282
https://doi.org/10.1016/j.tra.2014.08.004
https://doi.org/10.1016/j.physa.2012.11.036
https://doi.org/10.1016/j.physa.2012.11.036
https://doi.org/10.1016/j.physa.2019.123498
https://doi.org/10.1016/j.physa.2018.02.111
https://doi.org/10.1016/j.physa.2018.02.111
https://doi.org/10.1016/j.cities.2019.102406
https://doi.org/10.1016/j.procs.2016.11.024
https://doi.org/10.1017/nws.2015.9
https://doi.org/10.1016/j.cosrev.2020.100286
https://doi.org/10.1016/j.cosrev.2020.100286
https://doi.org/10.1007/s10618-021-00741-z
https://doi.org/10.1007/s10618-021-00741-z
https://doi.org/10.1109/tkde.2014.2349913
https://doi.org/10.48550/arXiv.1610.00844
https://doi.org/10.1155/2021/5571006


Role discovery in node-attributed public transportation networks: the model description 

Научно-технический вестник информационных технологий, механики и оптики, 2023, том 23, № 2 
350 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 2

strategy. Proc. of the IEEE 33rd International Conference on Data 
Engineering (ICDE), 2017, pp. 771–782. https://doi.org/10.1109/
icde.2017.128

17. Revelle M., Domeniconi C., Johri A. Persistent roles in online social 
networks. Lecture Notes in Computer Science, 2016, vol. 9852, 
pp. 47–62. https://doi.org/10.1007/978-3-319-46227-1_4

18. Rossi R.A., Gallagher B., Neville J., Henderson K. Modeling dynamic 
behavior in large evolving graphs. Proc. of the Sixth ACM 
International Conference on Web Search and Data Mining 
( W S D M ’ 1 3 ) ,  2 0 1 3 ,  p p .  6 6 7 – 6 7 6 .  h t t p s : / / d o i .
org/10.1145/2433396.2433479

19. Vega D., Meseguer R., Freitag F., Magnani M. Role and position 
detection in networks: Reloaded. Proc. of the 2015 IEEE/ACM 
International Conference on Advances in Social Networks Analysis 
and Mining (ASONAM) ,  2015, pp. 320–325. https://doi.
org/10.1145/2808797.2809412

20. Yang Z., Algesheimer R., Tessone C.J. A comparative analysis of 
community detection algorithms on artificial networks. Scientific 
Reports, 2016, vol. 6, no. 1, pp. 30750. https://doi.org/10.1038/
srep30750

21. Fortunato S. Community detection in graphs. Physics Reports, 2010, 
vol. 486, no. 3-5, pp. 75–174. https://doi.org/10.1016/j.
physrep.2009.11.002

22. Souravlas S., Sifaleras A., Tsintogianni M., Katsavounis S. A 
classification of community detection methods in social networks: a 
survey. International Journal of General Systems, 2021, vol. 50, 
no. 1, pp. 63–91. https://doi.org/10.1080/03081079.2020.1863394

23. Bartal A., Ravid G. Member behavior in dynamic online communities: 
Role affiliation frequency model. IEEE Transactions on Knowledge 
and Data Engineering, 2020, vol. 32, no. 9, pp. 1773–1784. https://
doi.org/10.1109/tkde.2019.2911067

24. Ni W., Guo H., Liu T., Zeng Q. Automatic role identification for 
research teams with ranking multi-view machines. Knowledge and 
Information Systems, 2020, vol. 62, no. 12, pp. 4681–4716. https://
doi.org/10.1007/s10115-020-01504-w

25. Liu S., Toriumi F., Nishiguchi M., Usui S. Multiple role discovery in 
complex networks. Studies in Computational Intelligence, 2022, 
vol. 1016, pp. 415–427. https://doi.org/10.1007/978-3-030-93413-
2_35

26. Liu Y., Du F., Sun J., Silva T., Jiang Y., Zhu T. Identifying social roles 
using heterogeneous features in online social networks. Journal of the 
Association for Information Science and Technology, 2019, vol. 70, 
no. 7, pp. 660–674. https://doi.org/10.1002/asi.24160

27. Zhang L., Lu J., Fu B., Li S. A review and prospect for the complexity 
and resilience of urban public transit network based on complex 
network theory. Complexity, 2018, vol. 2018, pp. 1–36. https://doi.
org/10.1155/2018/2156309

28. Shanmukhappa T., Ho I.W.-H., Tse C.K., Leung K.K. Recent 
development in public transport network analysis from the complex 
network perspective. IEEE Circuits and Systems Magazine, 2019, 
vol. 19, no. 4, pp. 39–65. https://doi.org/10.1109/mcas.2019.2945211

29. Xu Q., Mao B., Bai Y. Network structure of subway passenger flows. 
Journal of Statistical Mechanics: Theory and Experiment, 2016, 
vol. 2016, no. 3, pp. 033404. https://doi.org/10.1088/1742-
5468/2016/03/033404

30. Feng J., Li X., Mao B., Xu Q., Bai Y. Weighted complex network 
analysis of the beijing subway system: Train and passenger flows. 
Physica A: Statistical Mechanics and its Applications, 2017, vol. 474, 
pp. 213–223. https://doi.org/10.1016/j.physa.2017.01.085

31. Faust K., Wasserman S. Blockmodels: Interpretation and evaluation. 
Social Networks, 1992, vol. 14, no. 1, pp. 5–61. https://doi.
org/10.1016/0378-8733(92)90013-w

32. Batagelj V., Mrvar A., Ferligoj A., Doreian P. Generalized 
blockmodeling with Pajek. Metodološki zvezki, 2004, vol. 1, no. 2, 
pp. 455–467. https://doi.org/10.51936/ofaw1880

33. Luczkovich J., Borgatti S., Johnson J.C., Everett M.G. Defining and 
measuring trophic role similarity in food webs using regular 
equivalence. Journal of theoretical biology, 2003, vol. 220, no. 3, 
pp. 303–21. https://doi.org/10.1006/jtbi.2003.3147

34. Ma H., Zhou D., Liu C., Lyu M.R., King I. Recommender systems 
with social regularization. Proc. of the Fourth ACM International 
Conference on Web Search and Data Mining (WSDM’11), 2011, 
pp. 287–296. https://doi.org/10.1145/1935826.1935877

35. Golder S.A., Donath J. Social roles in electronic communities. 
Internet Research, 2004, vol. 5.

Engineering (ICDE). 2017. P. 771–782. https://doi.org/10.1109/
icde.2017.128

17. Revelle M., Domeniconi C., Johri A. Persistent roles in online social 
networks // Lecture Notes in Computer Science. 2016. V. 9852. 
P. 47–62. https://doi.org/10.1007/978-3-319-46227-1_4

18. Rossi R.A., Gallagher B., Neville J., Henderson K. Modeling dynamic 
behavior in large evolving graphs // Proc. of the Sixth ACM 
International Conference on Web Search and Data Mining (WSDM’13). 
2013. P. 667–676. https://doi.org/10.1145/2433396.2433479

19. Vega D., Meseguer R., Freitag F., Magnani M. Role and position 
detection in networks: Reloaded // Proc. of the 2015 IEEE/ACM 
International Conference on Advances in Social Networks Analysis 
and Mining (ASONAM). 2015. P. 320–325. https://doi.
org/10.1145/2808797.2809412

20. Yang Z., Algesheimer R., Tessone C.J. A comparative analysis of 
community detection algorithms on artificial networks // Scientific 
Reports. 2016. V. 6. N 1. P. 30750. https://doi.org/10.1038/srep30750

21. Fortunato S. Community detection in graphs // Physics Reports. 2010. 
V.  486 .  N  3 -5 .  P.  75–174 .  h t tps : / / do i .o rg /10 .1016 / j .
physrep.2009.11.002

22. Souravlas S., Sifaleras A., Tsintogianni M., Katsavounis S. A 
classification of community detection methods in social networks: a 
survey // International Journal of General Systems. 2021. V. 50. N 1. 
P. 63–91. https://doi.org/10.1080/03081079.2020.1863394

23. Bartal A., Ravid G. Member behavior in dynamic online communities: 
Role affiliation frequency model // IEEE Transactions on Knowledge 
and Data Engineering. 2020. V. 32. N 9. P. 1773–1784. https://doi.
org/10.1109/tkde.2019.2911067

24. Ni W., Guo H., Liu T., Zeng Q. Automatic role identification for 
research teams with ranking multi-view machines // Knowledge and 
Information Systems. 2020. V. 62. N 12. P. 4681–4716. https://doi.
org/10.1007/s10115-020-01504-w

25. Liu S., Toriumi F., Nishiguchi M., Usui S. Multiple role discovery in 
complex networks // Studies in Computational Intelligence. 2022. 
V. 1016. P. 415–427. https://doi.org/10.1007/978-3-030-93413-2_35

26. Liu Y., Du F., Sun J., Silva T., Jiang Y., Zhu T. Identifying social roles 
using heterogeneous features in online social networks // Journal of 
the Association for Information Science and Technology. 2019. V. 70. 
N 7. P. 660–674. https://doi.org/10.1002/asi.24160

27. Zhang L., Lu J., Fu B., Li S. A review and prospect for the complexity 
and resilience of urban public transit network based on complex 
network theory // Complexity. 2018. V. 2018. P. 1–36. https://doi.
org/10.1155/2018/2156309

28. Shanmukhappa T., Ho I.W.-H., Tse C.K., Leung K.K. Recent 
development in public transport network analysis from the complex 
network perspective // IEEE Circuits and Systems Magazine. 2019. 
V. 19. N 4. P. 39–65. https://doi.org/10.1109/mcas.2019.2945211

29. Xu Q., Mao B., Bai Y. Network structure of subway passenger flows 
// Journal of Statistical Mechanics: Theory and Experiment. 2016. 
V. 2016. N 3.  P.  033404. https:/ /doi.org/10.1088/1742-
5468/2016/03/033404

30. Feng J., Li X., Mao B., Xu Q., Bai Y. Weighted complex network 
analysis of the beijing subway system: Train and passenger flows // 
Physica A: Statistical Mechanics and its Applications. 2017. V. 474. 
P. 213–223. https://doi.org/10.1016/j.physa.2017.01.085

31. Faust K., Wasserman S. Blockmodels: Interpretation and evaluation 
// Social Networks. 1992. V. 14. N 1. P. 5–61. https://doi.
org/10.1016/0378-8733(92)90013-w

32. Batagelj V., Mrvar A., Ferligoj A., Doreian P. Generalized 
blockmodeling with Pajek // Metodološki zvezki. 2004. V. 1. N 2. 
P. 455–467. https://doi.org/10.51936/ofaw1880

33. Luczkovich J., Borgatti S., Johnson J.C., Everett M.G. Defining and 
measuring trophic role similarity in food webs using regular 
equivalence // Journal of theoretical biology. 2003. V. 220. N 3. 
P. 303–21. https://doi.org/10.1006/jtbi.2003.3147

34. Ma H., Zhou D., Liu C., Lyu M.R., King I. Recommender systems 
with social regularization // Proc. of the Fourth ACM International 
Conference on Web Search and Data Mining (WSDM’11). 2011. 
P. 287–296. https://doi.org/10.1145/1935826.1935877

35. Golder S.A., Donath J. Social roles in electronic communities // 
Internet Research. 2004. V. 5.

36. Yue H., Guan Q., Pan Y., Chen L., Lv J., Yao Y. Detecting clusters 
over intercity transportation networks using k-shortest paths and 
hierarchical clustering: a case study of mainland China // International 
Journal of Geographical Information Science. 2019. V. 33. N 5. 
P. 1082–1105. https://doi.org/10.1080/13658816.2019.1566551

https://doi.org/10.1109/icde.2017.128
https://doi.org/10.1109/icde.2017.128
https://doi.org/10.1007/978-3-319-46227-1_4
https://doi.org/10.1145/2433396.2433479
https://doi.org/10.1145/2433396.2433479
https://doi.org/10.1145/2808797.2809412
https://doi.org/10.1145/2808797.2809412
https://doi.org/10.1038/srep30750
https://doi.org/10.1038/srep30750
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1080/03081079.2020.1863394
https://doi.org/10.1109/tkde.2019.2911067
https://doi.org/10.1109/tkde.2019.2911067
https://doi.org/10.1007/s10115-020-01504-w
https://doi.org/10.1007/s10115-020-01504-w
https://doi.org/10.1007/978-3-030-93413-2_35
https://doi.org/10.1007/978-3-030-93413-2_35
https://doi.org/10.1002/asi.24160
https://doi.org/10.1155/2018/2156309
https://doi.org/10.1155/2018/2156309
https://doi.org/10.1109/mcas.2019.2945211
https://doi.org/10.1088/1742-5468/2016/03/033404
https://doi.org/10.1088/1742-5468/2016/03/033404
https://doi.org/10.1016/j.physa.2017.01.085
https://doi.org/10.1016/0378-8733(92)90013-w
https://doi.org/10.1016/0378-8733(92)90013-w
https://doi.org/10.51936/ofaw1880
https://doi.org/10.1006/jtbi.2003.3147
https://doi.org/10.1145/1935826.1935877
https://doi.org/10.1109/icde.2017.128
https://doi.org/10.1109/icde.2017.128
https://doi.org/10.1007/978-3-319-46227-1_4
https://doi.org/10.1145/2433396.2433479
https://doi.org/10.1145/2808797.2809412
https://doi.org/10.1145/2808797.2809412
https://doi.org/10.1038/srep30750
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1080/03081079.2020.1863394
https://doi.org/10.1109/tkde.2019.2911067
https://doi.org/10.1109/tkde.2019.2911067
https://doi.org/10.1007/s10115-020-01504-w
https://doi.org/10.1007/s10115-020-01504-w
https://doi.org/10.1007/978-3-030-93413-2_35
https://doi.org/10.1002/asi.24160
https://doi.org/10.1155/2018/2156309
https://doi.org/10.1155/2018/2156309
https://doi.org/10.1109/mcas.2019.2945211
https://doi.org/10.1088/1742-5468/2016/03/033404
https://doi.org/10.1088/1742-5468/2016/03/033404
https://doi.org/10.1016/j.physa.2017.01.085
https://doi.org/10.1016/0378-8733(92)90013-w
https://doi.org/10.1016/0378-8733(92)90013-w
https://doi.org/10.51936/ofaw1880
https://doi.org/10.1006/jtbi.2003.3147
https://doi.org/10.1145/1935826.1935877
https://doi.org/10.1080/13658816.2019.1566551


Научно-технический вестник информационных технологий, механики и оптики, 2023, том 23, № 2 
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no 2 351

Yu.V. Lytkin, P.V. Chunaev, T.A. Gradov, A.A. Boytsov, I.A. Saitov

36. Yue H., Guan Q., Pan Y., Chen L., Lv J., Yao Y. Detecting clusters 
over intercity transportation networks using k-shortest paths and 
hierarchical clustering: a case study of mainland China. International 
Journal of Geographical Information Science, 2019, vol. 33, no. 5, 
pp. 1082–1105. https://doi.org/10.1080/13658816.2019.1566551

37. Bereznyi D., Qutbuddin A., Her Y., Yang K. Node-attributed spatial 
graph partitioning. Proc. of the 28th International Conference on 
Advances in Geographic Information Systems (SIGSPATIAL’20), 
2020, pp. 58–67. https://doi.org/10.1145/3397536.3422198

38. MacQueen J. Some methods for classification and analysis of 
multivariate observations. Proc. of the Fifth Berkeley Symposium on 
Mathematical Statistics and Probability. V. 1. Statistics, 1967, 
pp. 281–297.

Authors
Yuri V. Lytkin — PhD (Physics & Mathematics), Senior Researcher, 
ITMO University, Saint Petersburg, 197101, Russian Federation, 
sc 57155292900, https://orcid.org/0000-0001-8140-010X, jurasicus@
gmail.com
Petr V. Chunaev — PhD (Physics & Mathematics), Senior Researcher, 
ITMO University, Saint Petersburg, 197101, Russian Federation, 
sc 36522457300, https://orcid.org/0000-0001-8169-8436, chunaev@
itmo.ru
Timofey A. Gradov — Engineer, ITMO University, Saint Petersburg, 
197101, Russian Federation, sc 57221121540, https://orcid.org/0000-
0003-2537-4087, timagradov@yahoo.com
Anton A. Boytsov — Engineer, ITMO University, Saint Petersburg, 
197101, Russian Federation, https://orcid.org/0000-0001-8343-2519, 
aboytsov@itmo.ru
Irek A. Saitov — Engineer, ITMO University, Saint Petersburg, 197101, 
Russian Federation, sc 57215429754, https://orcid.org/0000-0002-2805-
1323, xanilegendx@gmail.com

Received 03.12.2022
Approved after reviewing 31.01.2023
Accepted 14.03.2023

37. Bereznyi D., Qutbuddin A., Her Y., Yang K. Node-attributed spatial 
graph partitioning // Proc. of the 28th International Conference on 
Advances in Geographic Information Systems (SIGSPATIAL’20). 
2020. P. 58–67. https://doi.org/10.1145/3397536.3422198

38. MacQueen J. Some methods for classification and analysis of 
multivariate observations // Proc. of the Fifth Berkeley Symposium 
on Mathematical Statistics and Probability. V. 1. Statistics. 1967. 
P. 281–297.

Авторы
Лыткин Юрий Всеволодович — кандидат физико-математических 
наук, старший научный сотрудник, Университет ИТМО, Санкт-
Петербург, 197101, Российская Федерация, sc 57155292900, https://
orcid.org/0000-0001-8140-010X, jurasicus@gmail.com
Чунаев Петр Владимирович — кандидат физико-математических 
наук, старший научный сотрудник, Университет ИТМО, Санкт-
Петербург, 197101, Российская Федерация, sc 36522457300, https://
orcid.org/0000-0001-8169-8436, chunaev@itmo.ru
Градов Тимофей Алексеевич — инженер, Университет ИТМО, 
Санкт-Петербург, 197101, Российская Федерация, sc 57221121540, 
https://orcid.org/0000-0003-2537-4087, timagradov@yahoo.com
Бойцов Антон Алексеевич — инженер, Университет ИТМО, Санкт-
Петербург, 197101, Российская Федерация, https://orcid.org/0000-0001-
8343-2519, aboytsov@itmo.ru
Саитов Ирек Аликович — инженер, Университет ИТМО, Санкт-
Петербург, 197101, Российская Федерация, sc 57215429754, https://
orcid.org/0000-0002-2805-1323, xanilegendx@gmail.com

Статья поступила в редакцию 03.12.2022
Одобрена после рецензирования 31.01.2023
Принята к печати 14.03.2023

Работа доступна по лицензии 
Creative Commons 
«Attribution-NonCommercial»

https://doi.org/10.1080/13658816.2019.1566551
https://doi.org/10.1145/3397536.3422198
https://orcid.org/0000-0001-8140-010X
mailto:jurasicus@gmail.com
mailto:jurasicus@gmail.com
https://orcid.org/0000-0001-8169-8436
mailto:chunaev@itmo.ru
mailto:chunaev@itmo.ru
https://orcid.org/0000-0003-2537-4087
https://orcid.org/0000-0003-2537-4087
mailto:timagradov@yahoo.com
https://orcid.org/0000-0001-8343-2519
mailto:aboytsov@itmo.ru
https://orcid.org/0000-0002-2805-1323
https://orcid.org/0000-0002-2805-1323
mailto:xanilegendx@gmail.com
https://doi.org/10.1145/3397536.3422198
https://orcid.org/0000-0001-8140-010X
https://orcid.org/0000-0001-8140-010X
mailto:jurasicus@gmail.com
https://orcid.org/0000-0001-8169-8436
https://orcid.org/0000-0001-8169-8436
mailto:chunaev@itmo.ru
https://orcid.org/0000-0003-2537-4087
mailto:timagradov@yahoo.com
https://orcid.org/0000-0001-8343-2519
https://orcid.org/0000-0001-8343-2519
mailto:aboytsov@itmo.ru
https://orcid.org/0000-0002-2805-1323
https://orcid.org/0000-0002-2805-1323
mailto:xanilegendx@gmail.com

