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Abstract
The loss of the regulatory function of tumor suppression genes and mutations in Proto-oncogene are the common 
underlying mechanisms for uncontrolled tumor growth in the varied complex of disorders known as cancer. Oncogene 
can be curable by means of diagnosing and treating the possibilities of Proto-oncogene at earlier stages. Recently, 
machine learning approaches helps to focus and provide information about the possibilities of Proto-oncogene that may 
change into oncogene in different cancer types. This study helps to diagnose the possibilities of Proto-oncogene which 
are possible to change oncogenes at earlier stage. Thus, this present study proposed an efficient unique predictor of Proto-
oncogene with the help of Bi-Directional Long Short Term Memory added with attention concept. This approach also 
find the probability of Proto-oncogene to oncogene using statistical moments, position based amino-acid composition 
representation and deep features extracted from the sequence. Consequently, this study suggests that using a K-Nearest 
Neighbor classifier it is possible to find probability of changing from Proto-oncogene to cancerous oncogene.
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Основанное на особом интересе прогнозирование протоонкогена и 
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Аннотация
Утрата регуляторной функции генов, подавляющих опухоль, и мутации в протоонкогенах являются общими 
механизмами, лежащими в основе неконтролируемого роста опухолей при разнообразном комплексе заболеваний, 
известных как рак. Онкоген можно излечить путем диагностики и лечения возможностей протоонкогена 
на ранних стадиях. В последнее время подходы машинного обучения помогают сосредоточить внимание 
и предоставить информацию о возможностях протоонкогена, который может превращаться в онкоген при 
различных типах рака или изменять его на ранних стадиях. Предложен эффективный и уникальный предиктор 
протоонкогена с помощью нейронной сети Bi-Directional Long Short Term Memory (BiLSTM), дополненный 
концепцией ухода за больными. Этот подход также позволяет определить вероятность перехода от протоонкогена 

http://ntv.ifmo.ru/
http://ntv.ifmo.ru/en/
mailto:vijimarthresearch@gmail.com
https://orcid.org/0009-0001-2012-3169
mailto:vallinayagimahesh@gmail.com
https://orcid.org/0009-0006-0552-0138
mailto:vijimarthresearch@gmail.com
https://orcid.org/0009-0001-2012-3169
mailto:vallinayagimahesh@gmail.com
https://orcid.org/0009-0006-0552-0138


Научно-технический вестник информационных технологий, механики и оптики, 2024, том 24, № 1 
102 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no 1

Deep attention based Proto-oncogene prediction and Oncogene transition possibility detection...

к онкогену с использованием статистических моментов, представления аминокислотного состава на основе 
положения и глубоких особенностей, извлеченных из последовательности. В работе применен классификатор 
K-Nearest Neighbor с помощью, которого можно определить вероятность перехода от протоонкогена к раковому 
онкогену.
Ключевые слова
протоонкогены, PseAAC, прогнозирование, гены опухолевой супрессии, TSG, машинное обучение, 
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Благодарности
Особая благодарность доктору Л. Раджагопале Мартандаму, руководителю медицины, TMCH, Индия, за его 
поощрение и поддержку.
Ссылка для цитирования: Виджаялакшми М., Валлинаяги М. Основанное на особом интересе прогнозирование 
протоонкогена и обнаружение возможностей его мутации в онкоген на основе первоначального анализа 
последовательности аминокислот // Научно-технический вестник информационных технологий, механики и 
оптики. 2024. Т. 24, № 1. С. 101–111 (на англ. яз.). doi: 10.17586/2226-1494-2024-24-1-101-111

Introduction

A series of nucleotide bases that make up each gene are 
responsible for carrying information about the development 
and operation of cells. This essentially happens when 
the cells transform the genetic code into proteins. In 
the human body, every protein has a particular purpose. 
Proto-oncogenes are common cellular genes that  control 
cell division and development in humans [1]. It has been 
known for a long time that cancer is a result of loss of cell 
cycle control. The loss of control is a result of series of 
genetic mutations involving activation of Proto-oncogene 
to oncogenes and inactivation of tumour-suppressing genes.

The process of activation, which includes insertion 
mutations, point mutations, protein-protein interactions, 
retroviral transduction, gene amplification, chromosomal 
translocation, and transposon integration, can turn Proto-
oncogene into oncogenes. Proto-oncogenes are frequently 
classed according to how closely their sequences resemble 
those of known proteins or according to how they 
typically behave inside cells [2]. Oncogenomics is the 
study of the genes linked to the development of cancer. By 
point mutations or gene amplification, Proto-oncogenes 
are frequently activated in transformed cells [3]. These 
genes may have a role in the genesis of cancer, and their 
identification may offer fresh perspectives on cancer 
treatment and diagnosis [4]. Oncogenes are thought to 
be distinguishable from other genes by identifying their 
unique mutation profile since the effects of mutations on 
genes activities are related to those effects [5]. Due to the 
significant heterogeneity of mutations across individuals 
and various cancer types, it is challenging to identify 
novel oncogenes aside from those that are often mutated 
[6]. Consequently, it is essential to create computational 
techniques for the finding.

Automatic protein functional observations have 
gained more interest lately because they narrow the search 
space for effective experimental annotation [7]. Various 
techniques, including prediction by sequence [8], protein-
protein interactions [9], evolutionary relationships [10], 
protein structures and structure prediction algorithms [11], 
microarrays [12], and integration of data kinds [13], have 
enhanced tools for finding protein functional annotations. 
Additionally, a number of algorithms have been created to 
identify functional proteins from an amino acid sequence 
[14]. In general, protein functional detection research 

focuses on all types of functions, whether cancer-related or 
not. However, the subcategory of cancer-related functional 
detection is particularly helpful in cancer treatment. Hence, 
the present study has focused on which type of cancer is 
most possible along with protein functional detection for 
the given Proto-oncogene.

Related Reviews

The personalized therapy of cancer is a current 
research focus. This comprises a wide range of research 
projects centered on Proto-oncogene, oncogenes, DNA 
repair genes, DNA methylation, and tumour suppressor 
genes. For the purpose of identifying tumor suppressor 
genes in silico, several computational methods have been 
developed. Computer-based tools are capable of classifying 
complete protein functional detection as well as classifying 
various cancer types using clinical data, SNPs, and gene 
expressions in combination with conventional machine 
learning algorithms [15–20]. 

A given original protein sequence was utilized by 
Khan et al. [21] to extract location relative features for 
the identification of S-nitrosocystiene sites, which is the 
most common posttranslational modifications of proteins. 
In order to forecast Proto-oncogene, Malebary et al. 
[22] suggested statistical moments and position-based 
characteristics that were merged into Pseudo Amino-Acid 
Composition (PseAAC) based on Chou’s 5-step rules and 
Random Forest (RF) classifier. A strategy for locating 
hydroxylysine sites was put out by Mahmood et al. [23] 
and it is based on a potent statistical and mathematical 
methodology that takes into account the sequence-order 
impact and the makeup of each item inside protein 
sequences. To ascertain if an amino acid substitution 
(AAS) affects protein function, the “Sorting Tolerant from 
Intolerant” (SIFT) method was employed in [24, 25]. Yang 
et al. [26] employed the word segmentation strategy to 
extract characteristics from the protein sequence. The 
characteristics were then classified using the Support 
Vector Machine (SVM).

Ali et al. [27] created a promising classification model 
with good membrane protein type discrimination. PseAAC 
is used to extract the silent characteristics of protein 
sequences. SVM, Nave Bayes, K-Nearest Neighbor, Voting 
Feature Interval, and Probabilistic Neural Network were 
used as classification techniques. A categorization system 
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for angiogenesis and cancer angiogenesis was put up by 
Allehaibi et al. [28]. Using a position- and composition-
based method, variable-length proteome sequences were 
converted into fixed-length feature vectors. Utilizing 
statistical moments, position related information was 
further transformed into a condensed form. The best 
outcomes were determined using the three classifiers RF, 
Artificial Neural Network (ANN), and SVM. In order to 
detect TSGs and OGs by fusing extensive genetic and 
epigenetic data, Lyu et al. [29] created the algorithm 
Discovery of Oncogenes and Tumour SupressoR genes 
using Genetic and Epigenetic characteristics (DORGE). By 
incorporating nucleotide physicochemical characteristics 
into pseudo K-tuple nucleotide composition (PseKNC), 
Feng et al. [30] created a brand-new predictor known as 
iDNA6mA-PseKNC.

Huang et al. [31] established a technique to predict 
cancer proteins and used domain information to initially 
annotate protein interaction. Rahman et al. [32] introduced 
a system that directly extracts significant characteristics 
from protein sequences without relying on functional 
domain or structural information. They used the RF 
approach to rank the features after feature extraction and 
did the prediction scheme with SVM.

In order to determine a protein DNA-binding activity, 
Chowdhury et al. [33] created iDNAProt-ES, which makes 
use of both the evolutionary profile and structural data of 
proteins. They derived characteristics, such as amino acid 
composition, bigram, Dubchak features, auto-covariance, and 
segmentation distribution, from the Position-Specific Scoring 
Matrix (PSSM) profile. Ideal set of features are extracted 
using recursive feature elimination with the help of SPIDER2, 
the model was learned using SVM with a linear kernel.

Kumar et al. [34] exploit patient bias to find oncogenes 
far more effectively than current techniques by identifying 
it as a unique signal for cancer gene identification using 
RF classifier with relative/absolute position-based 
characteristics on Chou’s PseAAC. Akmal et al. [35] 
suggested a unique predictor called iGlycoS-PseAAC.

Proto-oncogene to Oncogene Probability Score 
Detection Methodology (PSD(p-o → o))

The proposed framework designed to find the 
probability of oncogene transformation from the given 
Proto-oncogene amino acid sequence; progress is clearly 
described in the following Fig. 1. This model provides 
relevant score for the chance of transforming Proto-
oncogene into oncogene sequence in the type of breast, 
lung, kidney and collateral cancers or when the Proto-
oncogene is stable as normal sequence. This approach 
extracts statistical moments and frequency and position 
based features [22] along with deep recurrent neural 
network of Bi-directional Long Short Term Memory 
(BiLSTM) features to find the chance of particular type 
of cancerous sequence formation or not with the help of 
traditional machine learning K-Nearest Neighbor classifier 
algorithm. This approach initially predicts whether a 
given sequence is Proto-oncogene or not with the help of 
BiLSTM network. Once it is identified as Proto-oncogene, 
it will check is there any possibility to be changed into 
oncogene. 

Feature Extraction
This study utilized a variety of feature extraction 

strategies, such as Statistical Moments Calculation (raw, 
central, and Hahn), Position Relative Incidence Matrix 
(PRIM), Frequency Vector Determination, Absolute 
Position Incidence Vector (AAPIV) and Deep learning 
based feature with the help of BiLSTM. 

Let peptide sample within the dataset be expressed as

 PSl (Z) = S0, S1, …, Sl,

where PS is Peptide Sample, Z contains the positive and 
negative samples, S0, S1… are the individual samples 
and l is non-uniform index indicating that the length of 
a sequence may vary. In other words, l represents the 
arbitrary length of the primary sequence which in this case 
is variable for each sample.

Fig. 1. The Architecture of PSD(p-o → o) Model
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Statistical Moments Calculation 
The statistical moments are typically employed to 

extract particular qualities from data. Various moment 
sequences were employed to depict distinct attributes 
within the data. While some of these moments are useful 
for evaluating the direction and eccentricity of the data, 
others are useful for evaluating the magnitude of the data. 
There are several moment-defining polynomials depending 
on certain distributions have been proven by statisticians 
and mathematicians [36–40]. The suggested predictor 
raw moments, central moments, and Hahn moments were 
estimated up to order three. Ordering up to 3 generates 
enough information about the nature of data in numeric 
form [41]. 

Raw moments have location and scale variation 
features. Consequently, central moments are scale variant 
and location or position invariant. Orders up to three 
provide enough details on the type of data in numerical 
form. Additionally, the Hahn coefficient was determined 
using the Hahn polynomial which produces yet a different 
set of moments representing the initial data. The orthogonal 
features of these statistical moments led to their selection. 
The fact that orthogonal moments display a variety of 
features and may be utilized to recreate the original data 
means that they inherently include important properties 
that allow for exact categorization [42]. In general, these 
moments sufficiently transform information regarding the 
positioning and composition of residues in the primary 
structure.

The two-dimensional matrix PSʹ of size n × n, which is 
a sequential transformation of all the amino acid residues 
of protein covered by PS, is the source of these moments 
computation (n is the order of the moment).

 PSʹ = 

 ac11 ac12 ⋯ ac1n
 ac21 ac22 ⋯ ac2n
 ⋮ ⋮ ⋱ ⋮
acn1 acn2 ⋯ acnn

 . 

Using the function ω [43], PS is converted to PSʹ, 
and each of its arbitrary components, acij, is an amino 
acid residue that has been placed in a two-dimensional 
setting. For all the moments up to degree 3, specific ordinal 
values of PSʹ elements were used. The raw moments are 
calculated by using equation:

 MTij = ∑
n

u=1
  ∑

n

v=1
uivjacuv, 

where acuv is an arbitrary component of matrix PSʹ, 
and i + j is the degree of the moments. Moreover, raw 
moments were denoted as MT00, MT01, MT02, MT03, MT10, 
MT11, MT12, MT20, MT21, and MT30 for degree up to 3. 
The following equation is then used to determine central 
moments:

 ηij = ∑
n

u=1
  ∑

n

v=1
(u – x)i(v – y)jacuv, 

where x = , and y =  which denotes the centroid 
of data. 

PS was transformed into a square matrix PSʹ as it offers 
a substantial advantage for enumeration of Hahn moments. 
Discrete orthogonal moments in two dimensions require a 
square matrix as input. This orthogonal feature of Hahn 
moments suggests that they may be reversed using an 
inverse function. This reversible quality makes it easier to 
rebuild the data, which essentially means that it maintains 
the original data relative location, and sequence structure 
contained these moments.

For a one-dimensional matrix of size N, the Hahn 
polynomials of order n are calculated using the equation 
below.

 hn
p,q(r, N) = (N + V – 1)n(N – 1)n × ∑

n

k=0
(–1)k ×

 ×   ,  

where N is the size of the data array, V represents feature 
vector length n is the order of the moment; p and q are 
predefined constants. Additionally, the Pochhammer 
symbol q, which in turn employs the gamma operator 
as indicated in [41], is used in the equation. The two-
dimensional Hahn moments are calculated using this Hahn 
coefficient as follows:

 Hij = ∑
N–1

v=0
  ∑
N–1

u=0
acuvhi

p,q(u, N).  

The order of the moment is pointed out by the addition 
of i and j, that is, i + j; p, q are predefined constants; and 
acuv refers to any member in the square matrix PSʹ.

PRIM
To quantify the relative locations of amino acids and 

learn more about the relative positions of amino acid 
residues in the protein, a PRIM in the form of a 20 × 20 
matrix was created. It is given as

 PSPRIM =  

 Seq1→1 Seq1→2… Seq1→j… Seq1→20

Seq2→1 Seq2→2… Seq2→j… Seq2→20

	 ⋮ ⋮ ⋮ ⋮

Seqi→1 Seqi→2… Seqi→j… Seqi→20

	 ⋮ ⋮ ⋮ ⋮

Seq20→1 Seq20→2… Seq20→j… Seq20→20

 .  

The sum of the positions of the jth theresidue and the ith 
residue initial occurrence for each element of this matrix is 
represented by the symbol Seqi→j. As a result, this matrix 
has 400 coefficients, which is a very large number. The 
opportunity to condense this information into a concise 
form is made possible by statistical moments. There are 30 
coefficients total for degrees up to 3 after computing the 
PRIM raw, central, and Hahn moments. In the same way, 
the Reverse Position Relative Incidence Matrix (RPRIM) 
was created using a basic protein sequence.

The PRIM can be denoted as:
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PSRPRIM =  

 Seq1→1 Seq1→2… Seq1→j… Seq1→20

Seq2→1 Seq2→2… Seq2→j… Seq2→20

	 ⋮ ⋮ ⋮ ⋮

Seqi→1 Seqi→2… Seqi→j… Seqi→20

	 ⋮ ⋮ ⋮ ⋮

Seq20→1 Seq20→2… Seq20→j… Seq20→20

 . (1)

Statistical moments were used to decrease the 
dimensionality of RPRIM, resulting in the construction 
of a set of 30 elements. The PRIM describes the relative 
positions of amino acid residues in a polypeptide chain. 
This information is augmented by the RPRIM in (1), which 
reveals even more hidden information by repeating the 
operation on the opposite side of the primary sequence.

Frequency Vector Determination 
Simple counting of each amino acid residue inside the 

main sequence yields the frequency vector. The frequency 
of each amino acid residue in the supplied sequence is 
represented by an element in the frequency vector. As a 
result, the frequency vector has 20 coefficients.

  fv = {∝1, ∝2 … … ∝20}.

Absolute Position Incidence Vector 
The frequency matrix significantly provides information 

on how amino acid residues are composed. The AAPIV 
gives a summary of the residue location. It had a length of 
20 elements and was composed of a single coefficient for 
each amino acid residue. The sum of the positions of every 
natural amino acid in the fundamental structure is included 
in elements of the AAPIV, which is given as equation:

 PO = {pos1, pos2, pos3, …, pos20} . 

Equation below made it possible to calculate any ith 

element of the AAPIV.

 posi = ∑
n

PO=1
posk, 

where posk represents the location of the ith amino acid 
residue. Consequently, the Reverse Accumulative Absolute 
Position Vector (RAAPIV) assessed additional specific data 
based on the absolute positions of amino acids in peptide 
samples. RAAPIV was produced by reversing the basic 
sequence and calculating AAPIV. That can be denoted as

 RAAPIV = {λ1, λ2, λ3, …, λ20}, 

where λi is the total number of positions in the main 
structure; then the ith amino acid residue can be found. 

BiLSTM 
The architecture of BiLSTM is depicted in Fig. 2. The 

input sequences will be routed into the BiLSTM with size 
128 filter. The outcome of BiLSTM is sent into maxpooling 
layer MP1 with size 2. Then, the Relu Layer will be applied 
to the output. The output of the Relu layer is then fed into 
the attention layer. The dropout layer will be given the 
results of the attention layer. The output of the BiLSTM 
layers is fed into the maxpooling layer MP2 with size 2. 
The outcome will then be applied to the Relu layer and 

then into the dense layer with size 128. The SoftMax 
classification will be used in the dense output to predict 
whether a given sequence is Proto-oncogene or not at the 
end of the architecture shown in the Fig. 2. The same layer 
model is used for extracting deep features as well as for the 
prediction of Proto-oncogene.

Feature Vector Description 
The final step in processing primary sequences (PSʹ) 

through all of the aforementioned phases is combining 
them to create an accumulative feature vector. Two 
dimensional representation of the major sequence matrices 
PRIM, PSʹ, and RPRIM are changed into a concise form 
through calculating their statistical moments (raw, central, 
and Hahn). Thus, it produces 90 coefficients. Another 
60 coefficients are included to the vector by pooling 
the frequency vector (fv), AAPIV (PO), and RAAPIV 
(RAAPIV). The deep features extracted by the final dense 
layer of the model with size of 128. Hence the final feature 
vector of the size 278 is used to find whether the given 
Proto-oncogene will change into oncogene or not. 

Probability Score Detection using ML Algorithm
After features were extracted using the feature 

extraction approaches, a fixed-sized feature vector with 278 
coefficients was created to be used for further processing 
in the machine learning algorithm for computing the 
possibilities of oncogene prediction. The features of Proto-
oncogene sequences were extracted by utilizing certain 

Fig. 2. BiLSTM Architecture
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feature extraction strategies like Statistical Moments 
Calculation (raw, central, and Hahn), PRIM, Frequency 
Vector Determination, AAPIV, and they are fed into the 
K-Nearest Neighbor classifier Machine learning model 
which predicts the probability of the formation of Oncogene 
that causes cancer. Furthermore, the different categories of 
oncogene sequences, like breast cancer oncogene, lung 
cancer oncogene, kidney cancer oncogene, collateral 
oncogene and stable Proto-oncogene, were extracted by 
the same feature extraction strategies. All the above feature 
vectors are fed into the proposed oncogene probability 
prediction machine learning model. This proposed model 
compares the available features to identify the probability 
score of the Proto-oncogene to mutate into different types 
of oncogene. It also predicts the probability score of Proto-
oncogene sample tested is a stable Proto-oncogene, which 
means it does not mutates into an oncogene.

Experimental Results

Dataset Description
The UniProt website consists of different kind 

resources, such as UniProt Knowledge Base (UniProtKB),  
UniProt Reference (UniRef), UniProt Archives (UniParc),  
and Protein Sets (Proteomes) of Fully Sequenced Genomes. 
Supporting datasets include protein information, such as 
transcript, distribution, sub cellular location, keywords, 
cross reference datasets, and disease, currently available 
in the UniProtKB protein entry. With the help of UniProt’s 
“Search/ID Mapping” tool, different described in UniProt 
[43]. The following Fig. 3 shows the UniProt search and 
downloading section for genomic data. In this work, the 630 
negative samples and 252 positive samples from the dataset 
provided by the ProtoPred [22] are used to train the BiLSTM 
with attention model for Proto-oncogene prediction as 
well as those 252 positive samples are used to find the 
probability of its status from Proto-oncogene to oncogene 
which causes different types of cancer. The following Table 
1 shows the sample Proto-oncogene [22] and oncogenes 
in different types of cancer from UniProtKB [43].

The benchmark data set is split into k (10) disjoint 
fold partitions for cross-validation. Table 2 displays the 
findings of the KFold cross validations of the proposed 
model and the following Table 3 shows the performance of 
the Proto-oncogene prediction using the designed BiLSTM 
with attention model compared with state art of works, as 
an independent test, 30 % samples used for testing and 
remaining 70 % of samples used for training. 

From the Table 3 it is found that the proposed  
BiLSTM_ATT model archives 97 % F1-Score, which is 
significantly better compared to the existing approaches. In the 
second phase of Proto-oncogene to oncogene transformation 
probability finding process, we trained the KNN classifier 
model with all the oncogene from different types of 
disease features along with stable Proto-oncogene features.

In the evaluation progress, for all of the 252 Proto-
oncogene the same set of statistical moments, frequency 
based features along with BiLSTM features are extracted 
and score for each five classes, such as breast cancer, lung 
cancer, kidney cancer, colorectal cancer and the Proto-
oncogene remains in the same state as denoted by stable, is 
estimated. Among the five scores, the class belonging to the 
maximum score is considered as the probability of changing 
Proto-oncogene to that particular type of oncogene or 
shows that there is no transition. The following Pie chart 
in the Fig. 4 clearly describes that the percentage of Proto-
oncogene in the dataset has the probability of changing 
into particular types of cancer disease or it won’t affect 
anything. A Pie chart is drawn based on the probability 
score attained by each Proto-oncogene  sequence in the 
benchmark dataset [22], and the highest score identifies the 
type of oncogene that is most probable. 

 From the execution of the design, it is found that the up 
to 43.3 % of sequence data has the probability of changing 
into breast cancer oncogene. Similarly, 30 % related to 
kidney cancer, 13.3 % possibility of colorectal cancer, 
10.8 % of lung cancer and 3.6 % of no transition. In this 
mode the probability of changes is estimated based on the 
highest score among all 5 classes. The highest score may 
be in any range from zero to one. In order to estimate the 

Fig. 3. UniProtKBSearch and its Result Page
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chance of changing from Proto-oncogene to oncogene 
in reliable form, a marginal threshold is fixed for the 
maximum score checking. In this work the threshold is 
fixed as 0.5. Here the chance of oncogene cancer type is 
determined not only by its maximum score, it also checks 
if that maximum score is greater than the pre-defined 
threshold. The probability of changes from Proto-oncogene 
to particular four types of cancerous gene or stable in the 
current state is shown in the following Fig. 5 with the 
threshold as 0.5. The predicted data whose highest score 
below 0.5 means it is in unpredictable class. Whereas in 
Fig. 4, the data is assigned to the class which has highest 
predicted score among all trained five classes. 

From the above Fig. 5, it is clear that the based on the 
threshold the probability of changing from Proto-oncogene 
to breast cancer oncogene is reduced from 43.3 % without 
threshold (Fig. 4) to 35.4 %. The following Fig. 6 shows 
the probability score for changing from Proto-oncogene to 
oncogene for the given testing unknown Proto-oncogene 
sequence in the Table 4. 

Table 1. Samples studied

Sample of Proto-oncogene sequence [22]
MECPSCQHVSKEETPKFCSQCGERLPPAAPIADSENNNSTMASA…

MAHSCRWRFPARPGTTGGGGGGGRRGLGGAPRQRVPALLLPPGP…
MKLNPQQAPLYGDCVVTVLLAEEDKAEDDVVFYLVFLGSTLRHC…
MDQTCELPRRNCLLPFSNPVNLDAPEDKDSPFGNGQSNFSEPLN…

MTSGGSASRSGHRGVPMTSRGFDGSRRGSLRRAGARETASEAAD…
Sample of the Kidney Cancer Sequence

MFASCHCVPRGRRTMKMIHFRSSSVKSLSQEMRCTIRLLDDSEISCHI…
MGQDAFMEPFGDTLGVFQCKIYLLLFGACSGLKVTVPSHTVHGVRG…
MRLEELKRLQNPLEQVNDGKYSFENHQLAMDAENNIEKYPLNLQPL…
MTVKTEAAKGTLTYSRMRGMVAILIAFMKQRRMGLNDFIQKIANN…
MAEQDVENDLLDYDEEEEPQAPQESTPAPPKKDIKGSYVSIHSSGFR…

Sample of the Lung Cancer Sequence
MENEKENLFCEPHKRGLMKTPLKESTTANIVLAEIQPDFGPLTTP…

MENFTALFGAQADPPPPPTALGFGPGKPPPPPPPPAGGGPGTA…
MKIIILLGFLGATLSAPLIPQRLMSASNSNELLLNLNNGQLLPLQL…
MPVSTSLHQDGSQERPVSLTSTTSSSGSSCDSRSAMEEPSSSEA…
MAFSDLTSRTVHLYDNWIKDADPRVEDWLLMSSPLPQTILLGF…

Sample of the Breast Cancer Sequence
MGQDAFMEPFGDTLGVFQCKIYLLLFGACSGLKVTVPSHTVHG…

MVQYELWAALPGASGVALACCFVAAAVALRWSGRRTARGAV…
MNYSLHLAFVCLSLFTERMCIQGSQFNVEVGRSDKLSLPGFENL…
MAGFGAMEKFLVEYKSAVEKKLAEYKCNTNTAIELKLVRFPEDL…

MDRSKENCISGPVKATAPVGGPKRVLVTQQFPCQNPLPVNSG…
Sample of the Colorectal Cancer Sequence

MKIIILLGFLGATLSAPLIPQRLMSASNSNELLLNLNNGQLLPLQ…
MSEKPKVYQGVRVKITVKELLQQRRAHQAASGGTRSGGSSVH…
MELSGATMARGLAVLLVLFLHIKNLPAQAADTCPEVKVVGLEG…
MIPPADSLLKYDTPVLVSRNTEKRSPKARLLKVSPQQPGPSGSA…
MEGAALLRVSVLCIWMSALFLGVGVRAEEAGARVQQNVPSGT…

Table 2. Findings of the KFold testing for Accuracy  
and F1-Score, %

Fold # Accuracy Precision Recall F1-Score

1 94 96 90 92
2 97 98 96 97
3 94 96 90 92
4 96 96 95 95
5 94 96 90 92
6 97 97 97 97
7 95 97 92 94
8 97 98 96 97
9 98 99 98 98

10 100 100 100 100
Average 96 96 94 95
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Table 3. Results of Proto-oncogene prediction using BiLSTM with Spatial Attention, %

Methods Accuracy F1-Score Precision Recall Specificity Mcc AUC

PSSM [44] 81 78 77 79 79 56 83
PseAAC [45] 85 82 81 83 83 64 89
ProtoPred_RF [22] 97 96 94 98 98 92 97
BiLSTM_ATT Model 97 97 96 98 98 94 98

Fig. 4. Percentage of Proto-oncogene has the possibility to change into particular type of oncogene or remains as it as Proto-
oncogene

Fig. 5. Probability of Transition from Proto-oncogene to Oncogenes with Score Threshold

Fig. 6. Predicted Probability Score for the Cancer Oncogene
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Conclusion

Mutations in Proto-oncogene are the leading causes of 
cancer because of exposure to a mutagen. Proto-oncogene 
proteins are formed when Proto-oncogene are translated. 
These proteins function as a biomarker for cancer 
susceptibility. The proposed approach offers a reliable in-
silico method for detecting such proteins. The suggested 
method incorporates all of the suggestions from the state 
of the art to create a computationally intelligent predictor. 
The features of a two-dimensional representation of the key 
structure of proteins, such as Statistical Moment Calculation 
(raw, central, and Hahn), Position Relative Incidence 
Matrix, Frequency Vector Determination, Absolute Position 
Incidence Vector and Deep RNN features, are gathered to 

form feature vectors. Following the extraction of feature 
vectors from both positive and negative sequences, the data 
is used to train the K-Nearest Neighbor machine learning 
classifier algorithm that is employed to find the probability 
score for each classes, such as stable, unpredictable or 
breast, lung, kidney and collateral cancers. The obtained 
results are evaluated using the benchmark ProroPred 
dataset. They show that the designed BiLSTM_Attention 
model achieves 97 % accuracy for the prediction of 
Proto-oncogene. The deep feature extraction along with 
statistical and moments features support the model to find 
the probability of transformation from Proto-oncogene to 
oncogene. This approach helps to find transformation from 
of Proto-oncogene to oncogene at earlier stage, which saves 
human life.

Table 4. Unknown Proto-oncogene Sequence for Prediction

MEYMSTGSDEKEEIDLLIKHLNVSEVIDIMENLYASEEPGVYEPSLMTMYPDS 
NQNEERSESLLRSGQEVPWLSSVRYGTVEDLLAFANHVSNMTKHFYGRRPQ 
ECGILLNMVISPQNGRYQIDSDVLLVPWKLTYRNIGSGFVPRGAFGKVYLA 
QDMKTKKRMACKLIPIDQFKPSDVEIQACFRHENIAELYGAVLWGDTVHLFM 
EAGEGGSVLEKLESCGPMREFEIIWVTKHILKGLDFLHSKKVIHHDIKPSNIV 
FMSTKAVLVDFGLSVKMTEDVYLPKDLRGTEIYMSPEVILCRGHSTKADIY 
SLGATLIHMQTGTPPWVKRYPRSAYPSYLYIIHKQAPPLEDIAGDCSPGMRELI 
EAALERNPNHRPKAADLLKHEALNPPREDQPRCQSLDSALFERKRLLSRKEL 

QLPENIADSSCTGSTEESEVLRRQRSLYIDLGALAGYFNIVRGPPTLEYG
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