HAYYHO-TEXHUYECKMI BECTHUK MH®OPMALIMOHHBIX TEXHOOM I, MEXAHVKI 1 OMTUKN

° CEeHTAOPb—OKTAGPL 2024 Tom 24 N2 5 http://ntv.ifmo.ru/ HAYYHO-TEXHMYECKMUM BECTHMK
I IITMO SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS “Hm“pm““““"hm IEXH“"""'“, MEXAH“K“ “ “"T"m
September—October 2024 Vol. 24 No 5 http://ntv.ifmo.ru/en/
ISSN 2226-1494 (print) ISSN 2500-0373 (online)

doi: 10.17586/2226-1494-2024-24-5-843-848

Single images 3D reconstruction by a binary classifier
Sallama Adhab Resen™

Directorate General of Vocational Education, Baghdad, 1001, Iraq
salamaresen@gmail.com™, https://orcid.org/0009-0007-5044-8857

Abstract

Intelligent systems demand interaction with a variety of complex environments. For example, a robot might need to
interact with complicated geometric structures in an environment. Accurate geometric reasoning is required to define the
objects navigating the scene properly. 3D reconstruction is a complex problem that requires massive amounts of images.
The paper proposes producing intelligent systems for 3D reconstruction from single 2D images. Propose a learnable
reconstruction context that uses features to realize the synthesis. Proposed methods produce encoding feature lable
input to classification, pulling out that information to make better decisions. Binary Classifier Neural Network (BCNN)
classifies whether a point is inside or outside the object. The reconstruction system models an object 3D structure and
learns feature filter parameters. The geometry and the corresponding features are implicitly updated based on the loss
function. The training doesn’t require compressed supervision to visualize the task of reconstructed shapes and texture
transfer. A point-set network flow results in BCNN having a comparable low memory footprint and is not restricted to
specific classes for which templates are available. Accuracy measurements show that the model can extend the occupancy
encoder by the generative model, which doesn’t request an image condition but can be trained unconditionally. The time
required to train the model will have more neurons and weight parameters overfitting.
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AHHOTaNMA

I/IHT@J’IJ’IGKTyaHbeIe CHUCTCMbI TpeGymT BSaHMOﬂCﬁCTBHﬂ C pasiIMYHBIMU CJIOKHBIMU OKPYXKAIIUMU CpEaAaMU.
Hanpumep, podoTy MOXeT nmoTpeboBaThCs B3aUMOJICHCTBOBATE B 0OCTAHOBKE CO CIOXXHBIMH T€OMETPUYECKUMU
CTpyKTypamu. JlJisi IpaBUIBHOTO ONpe/eIeHHs 00bEKTOB, MEPEMEIIAIONIMXC B IPOCTPAHCTBE, TPeOyeTcsi TOUHOE
reoMeTpuieckoe obocHoBaHHE. 3D-peKoOHCTpYKIHS — CIOXKHas 3amava, TpeOyromas O0NbIIOro KOTHYECTBA
n3o0paxeHuil. B pabore mpeiaraercsi co3gaHne HHTEIIEKTYAIbHBIX CHCTEM JUlsi 3D-pEeKOHCTPYKIUK U3 OTIEIbHBIX
2D-m300paskenuii. Pazpaboran 00ydaeMblii KOHTEKCT PeKOHCTPYKIINH, KOTOPBIH [UISl pean3aiiy CHHTE3a HCIIOIb3yeT
oIpesieNieHHbIe IPU3HaKH. Vconb3yeMble MeTOIbI OCYIECTBIISTIOT KOJUPOBAHHE IIPH3HAKOB METKH BXOJHBIX JaHHBIX
U1 KITacCU(UKALNK, U3BJIEKas 3Ty MH(POPMALIUIO JULS IPUHATHS Oosee 000CHOBaHHBIX pelleHnit. buHapHas cBepTouHas
HeliponHas ceTb (Binary Classifier Neural Network, BCNN) kiaccupuuupyet, HaXOIUTCs JIM TOYKA BHYTPH HIH
cHapykH o0bekTa. CucreMa peKOHCTPYKIMU MOAEIHpyeT 3D-CcTpyKTypy 00beKTa U n3ydaeT mapaMeTpbl GUiIbTpa
TIPHU3HAKOB. [ €OMeTpHUs M COOTBETCTBYIOIINE MPU3HAKH OOHOBIISIOTCS HA OCHOBE (DYHKIMHK TOTepb. O0yueHne MOaeT!
He TpeOyeT C)KaToro HaOMIONCHUS Ui BH3yaJIM3allMU 33/1adyl PEKOHCTPYHPOBAHHBIX (JOPM U MEPEHOCA TEKCTYPHI.
TTOTOK CeTH ¢ MHOKECTBOM TOYEK MPHBOAHUT K ToMY, 4T0 BCNN 3aHMMaeT CpaBHUTEIBHO Mablii 00beM MaMsTH
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Single images 3D reconstruction by a binary classifier

U HE OrPaHMYMBACTCS ONPEACICHHBIMU KJIACCaMHU, JJIS1 KOTOPBIX IOCTYITHBI madinoHsl. VccienoBaHne TOUHOCTH
METPUKH MOKa3aH, YTO MOJEIb MOXKET PACIIMPHUTH KOJUPOBIIUK 3aHATOCTH C IIOMOIIBIO T€HEPATHBHON MOJIEIH,
KOTOpas He 3alpalliiBaeT yCIOBHE MOMYUYCHUS H300paKeHUS U MOXKET OBITh 00ydeHa Oe3ycnoBHO. Takum oOpaszom, 3a
BpeMs, HeoOXoanMoe sl 00ydeHHsT MOAEIH, CO3AaeTCs OoJbliee KOTHIECTBO HEHPOHOB M BECOBBIX MEPEOOyUCHHBIX

TapaMeTpoB.

KiioueBble cjioBa

HHTEJUICKTyallbHbIe CHCTeMBI, 3D-peKoHCTpyKIHs, (GUIBTp MPU3HAKOB, CBEPTOUHBIC HEHPOHHBIE CETH, TBOMYHBIN

KJ1acCH(UKATOp HEHPOHHBIX CeTel

Cceplaka gas nutupoBanusi: Pecen C.A. TpexMepHas peKOHCTPYKIHS OTACIBHBIX H300pakeHUI ¢ TTOMOIIBIO
O6uHapHOTO KIaccudukaropa / Hayuno-TexHHYecKknil BECTHUK MH(POPMAIIMOHHBIX TEXHOJIOTHH, MEXaHUKH W ONTHKU.
2024.T. 24, Ne 5. C. 843848 (na anru. 513.). doi: 10.17586/2226-1494-2024-24-5-843-848

Introduction

3D reconstruction is a challenging problem and
has been discussed by many researchers and articles. A
traditional 3D reconstruction pipeline takes input images.
First, the camera poses for each image are computed using
structure from motion or bundle adjustment, and then acute
correspondences are computed across [1]. Many techniques
represent output predicted by a deep neural network.
3D reconstruction for further optimization uses point
representation, mesh refinement, or volumetric techniques.
Geometric 3D representation illustrated in Fig. 1.

Voxel representations have been proposed for the
reconstruction task as they are easy to process with neural
networks. With voxel representation limitations, memory
grows cubically in three dimensions. Outputs process at
limited spatial resolution; the chosen coordinate system
defines the voxels [2]. Voxel representations discretize
the 3D space into regular grid cells, 2D and 3D. Mesh
output representations for 3D reconstruction use deep
neural networks. Meshes discretize space into vertices
and faces but are still limited in the number of vertices.
Meshes are patch-based approaches to self-intersections
and non-watertight meshes. Mesh predictions by the neural
network need help for output representation, where mesh
needs a specific template to deform a mesh model instead
of an explicit output representation. Point sets are another
representation recently considered as output for neural
networks. Point sets discretize the object’s surface into 3D
points to model the connectivity. Existing approaches could
be more extensive in several points that can be processed.
Local shape information is hard to encode; thus, point set-
generating networks involve global shape encoding. The
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Fig. 1. Geometric 3D representation

images have local and global information, but the essential
local features are accurate. To examine further, add more
details to the regional features. The idea of using the local
and global features was investigated. The paper proposes
an implicit output representation that does not require any
discretization. It can parallel model arbitrary topology
and arbitrary resolution on the Graphics Processing Units
(GPU) and input as many points as fit into GPU memory.
The method is not restricted to specific categories for
available templates with comparable low memory; instead
of having a deeper, fully connected network, proposed
3D convolutions are similar to convolutions on the 2D
image space. The 2D convolutional network operates on the
image domain. The 3D points query the image depending
on the projection of the 3D point that falls into that
image. Reconstructions were obtained for both geometry
and feature representation. Models produce accurate
reconstructions for huge spaces.

Literature review

Remarkable progress has been made in 3D
reconstruction, mainly credited to the rise of neural
implicit modeling and advancements in differentiable
rendering. Learning systems can learn dense, high-fidelity
3D from multi-view camera images. 3D reconstruction
from a single image is challenging because it involves
exploitation, visualization, and extracting information from
images. The classical explicit representations differentiable
rendering algorithms allow us to learn representations
from 2D supervision only from RGB images [3]. Define
a differentiable rendering algorithm architecture that
combines geometry and appearance prediction [4]. The
image encoder takes a 2D image and produces a global
latent code for that image [5]. In [6], the forward and
backward paths of the network are defined. The forward
path corresponds to the rendering path [7]. The model
can handle geometric details for entire scenes for single
objects. The model leads to fewer occlusion artifacts
than previous novel view synthesis baselines [8] which
presented representations from 2D images, encode the
input 3D shape using a point encoding into a global shape
encoding and render the 3D shape into a depth map. 3D
surface un-projection through the camera matrix was
made for every pixel corresponding to the depth map
[9]. Network architecture for predicting occupants has an
encoder [10, 11]. The encoder depends on the condition of
either a 2D image or a 3D point and on rough voxelization
[12]. The encoder produces a set of conditioned layers.
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These layers are conditioned on encoding and finding the
3D point location [13]. The shape encodes and predicts an
RGB color value. Build generative versions of the model
using adversarial loss encoder images. Single image texture
reconstruction has the 2D input image and a 2D novel view
synthesis baseline results. Synthesis baseline is hard in 2D
to 3D translation. Building a model has investigated the
representation power of the model reconstruction loss gain
encoder [14, 15].

The predicted Neural Network (NN) model takes a
point and passes it to a given image condition where the
dots are the centers of the voxels [16]. 3D point queries
the features using the neighbor interpolation technique.
Integrate multiple views and get more precise results on the
back of the model [17]. The work [18] combined the idea of
implicit representations with primitive-based shape models.
From [19] they proposed the universal differentiable
renderer for NN representations. The work is considered
the normal light location, and the 3D point matches the
texture fields for the color value. Pixel- and feature-based
reconstructions are performed in low and high-frequency
domains. The fused view produced high-quality sentences.
The paper found an analytic solution in comparison to a
connected network. Instead of representing the 3D shape
explicitly, consider the object implicitly as the decision
boundary of a Binary Classifier Neural Network (BCNN)
classifier. First, the NN geometry must be extracted in a
post-processing step which consumes time. The extension
to 3D is complex due to dimensionality. The 3D network
operates on a fully connected network that has interpolated
the features from the 2D image. 3D convolutions have
to generate a 3D feature volume. The feature gets as
input and predicts 3D object location based on authentic
images.

Single image 3D reconstruction

The framework covers two main parts: the learned
feature module and 3D pixel reconstruction. The points
set the generation network and detect occupancy results.
Fig. 2 shows the framework stages. We want to know
how to extract information from collected images over
time and how to represent the surface and change in
3D reconstruction. The classifier network loses a lot of
geometrical detail through occupancy flow, suffering from
dimensionality. Areas outlined in the boundary contained
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Fig. 2. Proposed stages

on the surface have a significant effect on allocations.
The method assumes two hypotheses to produce more
autonomous, robust, and safe results.

Stage 1. Relying on local information puts certain
constraints on the encoding image. Investigating regional
and global features to label them and the global context
assisted in representing 3D.

Stage 2. The data set includes different variations in the
single image where a features filter is applied to the labeled
image. The BCNN network was tiny to determine whether
this small patch shows evidence of possibility. Fig. 2 shows
the proposed stages. Stage 1 learns features to predicate the
shape of an object from a given input image. In stage 2, the
establishment field is discovered using the already trained
modules in this stage.

In training, the system doesn’t require any form of
compressed supervision. It learns only from unpaired
single-image collections and corresponding feature masses.
Once discovered, it reconstructs 3D geometry and models
dense correspondences from a single image. These features
guide the established reconstruction of BCNN in input
geometry. The learned point features are concatenated with
the 3D point deformations. 3D shapes are rendered into
a depth map by projection through the camera matrix to
query 3D points on the surface. Every pixel corresponds
to that depth map to get the color value 3D point and link
texture. We output the texture in 3D location on the shape
encoding, and the image encoding to reconstruct 3D.

Features labels

Image features are detected based on local and global
spatial geometry. Many criteria are used to identify
features, and there are different ways of using those
criteria. Compute image information which distributes
first-order spatial derivatives based on orientation. The
edges show up as sharp changes in pixel values in the
derivative. The edge locations correspond to the minimum
and maximum derivatives. Measure the edge sharpness
minima and maximum derivatives which are helpful in
obtaining magnitudes. The edge locations can be further
isolated using local intensity. Corners are detected by first
noticing edges where those edges intersect. The corner filter
function is detected based on gradients. The features are a
number list showing each point position and orientation.
A vital feature characteristic is that they are relatively
unaffected by scale translation, rotation, and brightness
changes. The main idea behind a convolutional neural
network is using filters. These filters are responsible for
detecting the features or patterns in the image. Many filters
pass on the image individually to generate a label. Labeled
images are generated by using a filter of 3 x 3 pixels. The
total number of parameters in this is only 9, significantly
reducing the number of parameters to train. A single layer
of a convolutional neural network will use many filters
which might detect the corners, edges, and orientation.
These filter results will be passed in parallel onto the further
layers which label the features associated with the image.
Binary classification is a supervised learning method; a
training sample includes input and corresponding labels.
Data is labeled before training.
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A single layer of a convolutional neural network uses
many filters. Three filters are used to get three different
images. The entire convolution operation gives small values
as parameters to train. After model training, these parameter
values take a specific value which can detect the associated
features from the images.

BCNN classifier

The classifier considers the object surface as the
decision boundary instead of explicitly the total 3D shape
representing. The BCNN classifies a point as inside or
outside the object depending on classifier function fg in
the following equation:

Jo(p, x) = R3x — [0, 1],

where R3 is 3D location; R3 € (p, x); p is input point; x is
encoding image conditions; [0,1] is occupancy probability;
O is neural network parameter.

The occupancy networks update filter feature
parameters followed by reconstruction loss. Labels used
by the BCNN to detect occupancy points can refine the
boundaries. BCNN implicit features models have effective
output representations for shape, appearance, materials, and
location. Assume the four points are inside, and the rest are
outside. Then, iterate at times until the desired resolution is
obtained. Fig. 3 shows that the red points are classified as
inside, and the blue points are classified as outside. All the
blue points have a low occupancy probability close to zero.
The red points should be classified as outside and have a
high occupancy probability close to one.

The input points network uses the number of points
K equals three times the 3D coordinates. The output
for each K point is the involved probability value. The
classification loss function assumes the ground truth
occupies the label for each 3D point that trains the
equation below. The loss function updates the prediction
parameter @ while training.

K
Loss(D), = 21 Loss(fo(pijxi)s 0ip),
=

where K randomly sampled 3D points p;j; 0;; observation
dataset.

Parameters @ takes input 3D location, three coordinates,
and a condition vector. The occupancy value of the
reconstruction model at time equals zero. Compare this
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Fig. 3. BCNN occupies probability (a) detect grid points, (b)
evaluate voxels and (c) mark surface points

occupancy value to the actual occupancy in observations of
the corresponding point location given the image condition
corresponding to this label. Fig. 4 represents the shape only
at a single point using a 3D occupancy network that can
recover geometric detail.

The mapping between the object space and the 3D
space points is based on a signed distance-driven functional
mapping. A sign-distance generator on the corresponding
encodes is used to learn the 3D shape and correspondence
field jointly. Signed-distance evaluates the texture field at
this predicted surface point and inserts the color value at
that corresponding pixel location.

The time limitation of the traditional simple neural
network, while dealing with the images, can affect the
model performance. The number of operations performed
will be significant, and we might need help handling them
correctly. Identifying the features from the images permits
us to reconstruct the presence of the object automatically
in 3D. The BCNN allows the processing of many filters in
parallel, significantly reducing time consumption. The only
additional time is taken in the filter slice which is still much
less than time would have taken by training a simple neural
network. Fig. 5 shows the classification that produces labels
for an image dataset containing single images. The dataset
involves online images of radio, telephone, stairs, sink, car,
bin, cabinet, and balcony stone. The results were obtained
with a proposed model compared to novel view synthesis
baselines.

Fig. 5 shows results that investigated the model power
of representation 3D. The first raw is the ground truth
example while the second shows label-encoded results.
The third raw is to display the overfitting of the texture
and object.

The accuracy measurement of the learning model
calculated the number of data points detected correctly
by comparing the image containing evidence with ground
truth. These results are predicted from a single image by
combining the implicit representations with primitive-
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Fig. 4. Mapping 3D point
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based shape models. The high accuracy of the model needs
to be corrected in labeling and distinguishing between
relevant and irrelevant data. Four measurements are applied
to examine the results: precision, recall, chamfer-L1, and
Intersection over Union (IoU). Precision is calculated by
dividing the predicted label from the overall accurate label.
Recall measures the number of relevant elements detected.
The recall percentage gives the probability that a randomly
selected relevant item from the data set will be detected.
Distance chamfer-L1 calculates similarity between set
point distance. IoU quantifies the similarity between the
predicted bounding and the ground truth. Table displays the
model evaluated by accurate measurements.

Precision and recall are calculated to select the
suitable model. Recall quantifies the number of positive
predictions from all positive examples in the data set.
Find the intersection between the two boundaries and the
second portion, the union between the ground truth and
the predicted. IoU is used for evaluation in the field of
object detection. Table displays the results of the generative
model showing that latent space interpolations have the
same appearance code for different geometry encoding.
Smoothing applies acceptable geometric detail structures

Table. Accuracy measurements

Object Recall Precision | Chamfer-L1 IoU
car 0.892 0.874 0.291 0.781
recycle bin 0.901 0.910 0.109 0.690
cabinet 0.868 0.849 0.251 0.589
balcony stone | 0.859 0.861 0.194 0.609
telephone 0.871 0.880 0.201 0.698
radio 0.909 0.893 0.099 0.794
stair 0.790 0.802 0.301 0.805
sink 0.793 0.799 0.273 0.789
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to overfit each object individually. In general, the approach
time equals the ground truth object and the object deformed
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Conclusion

Proposed approaches generally optimize single
images to transfer 3D knowledge. BCNN is a simple,
fully connected architecture that merges local and global
conditioning for real data. It is necessary to input a single
image to learn features filter parameters, and then image
maps in 3D points. Features are dependent on the 3D
location of the points and the viewing direction. Train
filters feature parameters using a reconstruction loss
function on a data set that has realistic materials. The loss
function takes the actual occupancy value and the classifier
decision boundary. The loss function is learning weight
correspondence information that enhances representing
spatially encoded. The approach predicts a latent code for
the image that gets reconstructed and overfitted results.
Approach characteristics depend on the surface implicitly
considered instead of the shape explicitly. 3D convolutions
generate a 3D feature volume. The convolution train
inputs filter parameters that will detect the associated
features from the images. The texture produces field and
voxelization of the object. BCNN then queries labels by
signed distance from 3D points. The last layers detect the
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Representing scenes as neural radiance fields uses volume
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