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Abstract
Intelligent systems demand interaction with a variety of complex environments. For example, a robot might need to 
interact with complicated geometric structures in an environment. Accurate geometric reasoning is required to define the 
objects navigating the scene properly. 3D reconstruction is a complex problem that requires massive amounts of images. 
The paper proposes producing intelligent systems for 3D reconstruction from single 2D images. Propose a learnable 
reconstruction context that uses features to realize the synthesis. Proposed methods produce encoding feature lable 
input to classification, pulling out that information to make better decisions. Binary Classifier Neural Network (BCNN) 
classifies whether a point is inside or outside the object. The reconstruction system models an object 3D structure and 
learns feature filter parameters. The geometry and the corresponding features are implicitly updated based on the loss 
function. The training doesn’t require compressed supervision to visualize the task of reconstructed shapes and texture 
transfer. A point-set network flow results in BCNN having a comparable low memory footprint and is not restricted to 
specific classes for which templates are available. Accuracy measurements show that the model can extend the occupancy 
encoder by the generative model, which doesn’t request an image condition but can be trained unconditionally. The time 
required to train the model will have more neurons and weight parameters overfitting. 
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Аннотация
Интеллектуальные системы требуют взаимодействия с различными сложными окружающими средами. 
Например, роботу может потребоваться взаимодействовать в обстановке со сложными геометрическими 
структурами. Для правильного определения объектов, перемещающихся в пространстве, требуется точное 
геометрическое обоснование. 3D-реконструкция — сложная задача, требующая большого количества 
изображений. В работе предлагается создание интеллектуальных систем для 3D-реконструкции из отдельных 
2D-изображений. Разработан обучаемый контекст реконструкции, который для реализации синтеза использует 
определенные признаки. Используемые методы осуществляют кодирование признаков метки входных данных 
для классификации, извлекая эту информацию для принятия более обоснованных решений. Бинарная сверточная 
нейронная сеть (Binary Classifier Neural Network, BCNN) классифицирует, находится ли точка внутри или 
снаружи объекта. Система реконструкции моделирует 3D-структуру объекта и изучает параметры фильтра 
признаков. Геометрия и соответствующие признаки обновляются на основе функции потерь. Обучение модели 
не требует сжатого наблюдения для визуализации задачи реконструированных форм и переноса текстуры. 
Поток сети с множеством точек приводит к тому, что BCNN занимает сравнительно малый объем памяти 
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и не ограничивается определенными классами, для которых доступны шаблоны. Исследование точности 
метрики показали, что модель может расширить кодировщик занятости с помощью генеративной модели, 
которая не запрашивает условие получения изображения и может быть обучена безусловно. Таким образом, за 
время, необходимое для обучения модели, создается большее количество нейронов и весовых переобученных 
параметров. 
Ключевые слова
интеллектуальные системы, 3D-реконструкция, фильтр признаков, сверточные нейронные сети, двоичный 
классификатор нейронных сетей
Ссылка для цитирования: Ресен С.А. Трехмерная реконструкция отдельных изображений с помощью 
бинарного классификатора // Научно-технический вестник информационных технологий, механики и оптики. 
2024. Т. 24, № 5. С.  843–848 (на англ. яз.). doi: 10.17586/2226-1494-2024-24-5-843-848

Introduction

3D reconstruction is a challenging problem and 
has been discussed by many researchers and articles. A 
traditional 3D reconstruction pipeline takes input images. 
First, the camera poses for each image are computed using 
structure from motion or bundle adjustment, and then acute 
correspondences are computed across [1]. Many techniques 
represent output predicted by a deep neural network. 
3D reconstruction for further optimization uses point 
representation, mesh refinement, or volumetric techniques. 
Geometric 3D representation illustrated in Fig. 1. 

Voxel representations have been proposed for the 
reconstruction task as they are easy to process with neural 
networks. With voxel representation limitations, memory 
grows cubically in three dimensions. Outputs process at 
limited spatial resolution; the chosen coordinate system 
defines the voxels [2]. Voxel representations discretize 
the 3D space into regular grid cells, 2D and 3D. Mesh 
output representations for 3D reconstruction use deep 
neural networks. Meshes discretize space into vertices 
and faces but are still limited in the number of vertices. 
Meshes are patch-based approaches to self-intersections 
and non-watertight meshes. Mesh predictions by the neural 
network need help for output representation, where mesh 
needs a specific template to deform a mesh model instead 
of an explicit output representation. Point sets are another 
representation recently considered as output for neural 
networks. Point sets discretize the object’s surface into 3D 
points to model the connectivity. Existing approaches could 
be more extensive in several points that can be processed. 
Local shape information is hard to encode; thus, point set-
generating networks involve global shape encoding. The 

images have local and global information, but the essential 
local features are accurate. To examine further, add more 
details to the regional features. The idea of using the local 
and global features was investigated. The paper proposes 
an implicit output representation that does not require any 
discretization. It can parallel model arbitrary topology 
and arbitrary resolution on the Graphics Processing Units 
(GPU) and input as many points as fit into GPU memory. 
The method is not restricted to specific categories for 
available templates with comparable low memory; instead 
of having a deeper, fully connected network, proposed 
3D convolutions are similar to convolutions on the 2D 
image space. The 2D convolutional network operates on the 
image domain. The 3D points query the image depending 
on the projection of the 3D point that falls into that 
image. Reconstructions were obtained for both geometry 
and feature representation. Models produce accurate 
reconstructions for huge spaces. 

Literature review

 Remarkable progress has been made in 3D 
reconstruction, mainly credited to the rise of neural 
implicit modeling and advancements in differentiable 
rendering. Learning systems can learn dense, high-fidelity 
3D from multi-view camera images. 3D reconstruction 
from a single image is challenging because it involves 
exploitation, visualization, and extracting information from 
images. The classical explicit representations differentiable 
rendering algorithms allow us to learn representations 
from 2D supervision only from RGB images [3]. Define 
a differentiable rendering algorithm architecture that 
combines geometry and appearance prediction [4]. The 
image encoder takes a 2D image and produces a global 
latent code for that image [5]. In [6], the forward and 
backward paths of the network are defined. The forward 
path corresponds to the rendering path [7]. The model 
can handle geometric details for entire scenes for single 
objects. The model leads to fewer occlusion artifacts 
than previous novel view synthesis baselines [8] which 
presented representations from 2D images, encode the 
input 3D shape using a point encoding into a global shape 
encoding and render the 3D shape into a depth map. 3D 
surface un-projection through the camera matrix was 
made for every pixel corresponding to the depth map 
[9]. Network architecture for predicting occupants has an 
encoder [10, 11]. The encoder depends on the condition of 
either a 2D image or a 3D point and on rough voxelization 
[12]. The encoder produces a set of conditioned layers. Fig. 1. Geometric 3D representation
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These layers are conditioned on encoding and finding the 
3D point location [13]. The shape encodes and predicts an 
RGB color value. Build generative versions of the model 
using adversarial loss encoder images. Single image texture 
reconstruction has the 2D input image and a 2D novel view 
synthesis baseline results. Synthesis baseline is hard in 2D 
to 3D translation. Building a model has investigated the 
representation power of the model reconstruction loss gain 
encoder [14, 15]. 

The predicted Neural Network (NN) model takes a 
point and passes it to a given image condition where the 
dots are the centers of the voxels [16]. 3D point queries 
the features using the neighbor interpolation technique. 
Integrate multiple views and get more precise results on the 
back of the model [17]. The work [18] combined the idea of 
implicit representations with primitive-based shape models. 
From [19] they proposed the universal differentiable 
renderer for NN representations. The work is considered 
the normal light location, and the 3D point matches the 
texture fields for the color value. Pixel- and feature-based 
reconstructions are performed in low and high-frequency 
domains. The fused view produced high-quality sentences. 
The paper found an analytic solution in comparison to a 
connected network. Instead of representing the 3D shape 
explicitly, consider the object implicitly as the decision 
boundary of a Binary Classifier Neural Network (BCNN) 
classifier. First, the NN geometry must be extracted in a 
post-processing step which consumes time. The extension 
to 3D is complex due to dimensionality. The 3D network 
operates on a fully connected network that has interpolated 
the features from the 2D image. 3D convolutions have 
to generate a 3D feature volume. The feature gets as 
input and predicts 3D object location based on authentic 
images. 

Single image 3D reconstruction

The framework covers two main parts: the learned 
feature module and 3D pixel reconstruction. The points 
set the generation network and detect occupancy results. 
Fig. 2 shows the framework stages. We want to know 
how to extract information from collected images over 
time and how to represent the surface and change in 
3D reconstruction. The classifier network loses a lot of 
geometrical detail through occupancy flow, suffering from 
dimensionality. Areas outlined in the boundary contained 

on the surface have a significant effect on allocations. 
The method assumes two hypotheses to produce more 
autonomous, robust, and safe results.

Stage 1. Relying on local information puts certain 
constraints on the encoding image. Investigating regional 
and global features to label them and the global context 
assisted in representing 3D. 

Stage 2.  The data set includes different variations in the 
single image where a features filter is applied to the labeled 
image. The BCNN network was tiny to determine whether 
this small patch shows evidence of possibility. Fig. 2 shows 
the proposed stages. Stage 1 learns features to predicate the 
shape of an object from a given input image. In stage 2, the 
establishment field is discovered using the already trained 
modules in this stage. 

In training, the system doesn’t require any form of 
compressed supervision. It learns only from unpaired 
single-image collections and corresponding feature masses. 
Once discovered, it reconstructs 3D geometry and models 
dense correspondences from a single image. These features 
guide the established reconstruction of BCNN in input 
geometry. The learned point features are concatenated with 
the 3D point deformations. 3D shapes are rendered into 
a depth map by projection through the camera matrix to 
query 3D points on the surface. Every pixel corresponds 
to that depth map to get the color value 3D point and link 
texture. We output the texture in 3D location on the shape 
encoding, and the image encoding to reconstruct 3D.

Features labels

Image features are detected based on local and global 
spatial geometry. Many criteria are used to identify 
features, and there are different ways of using those 
criteria. Compute image information which distributes 
first-order spatial derivatives based on orientation. The 
edges show up as sharp changes in pixel values in the 
derivative. The edge locations correspond to the minimum 
and maximum derivatives. Measure the edge sharpness 
minima and maximum derivatives which are helpful in 
obtaining magnitudes. The edge locations can be further 
isolated using local intensity. Corners are detected by first 
noticing edges where those edges intersect. The corner filter 
function is detected based on gradients. The features are a 
number list showing each point position and orientation. 
A vital feature characteristic is that they are relatively 
unaffected by scale translation, rotation, and brightness 
changes. The main idea behind a convolutional neural 
network is using filters. These filters are responsible for 
detecting the features or patterns in the image. Many filters 
pass on the image individually to generate a label. Labeled 
images are generated by using a filter of 3 × 3 pixels. The 
total number of parameters in this is only 9, significantly 
reducing the number of parameters to train. A single layer 
of a convolutional neural network will use many filters 
which might detect the corners, edges, and orientation. 
These filter results will be passed in parallel onto the further 
layers which label the features associated with the image. 
Binary classification is a supervised learning method; a 
training sample includes input and corresponding labels. 
Data is labeled before training. Fig. 2. Proposed stages
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A single layer of a convolutional neural network uses 
many filters. Three filters are used to get three different 
images. The entire convolution operation gives small values 
as parameters to train. After model training, these parameter 
values take a specific value which can detect the associated 
features from the images.

BCNN classifier

The classifier considers the object surface as the 
decision boundary instead of explicitly the total 3D shape 
representing. The BCNN classifies a point as inside or 
outside the object depending on classifier function fØ in 
the following equation: 

 fØ(p, x) = R3x → [0, 1],

where R3 is 3D location; R3 ∈ (p, x); p is input point; x is 
encoding image conditions; [0,1] is occupancy probability; 
Ø is neural network parameter.

The occupancy networks update filter feature 
parameters followed by reconstruction loss. Labels used 
by the BCNN to detect occupancy points can refine the 
boundaries. BCNN implicit features models have effective 
output representations for shape, appearance, materials, and 
location. Assume the four points are inside, and the rest are 
outside. Then, iterate at times until the desired resolution is 
obtained. Fig. 3 shows that the red points are classified as 
inside, and the blue points are classified as outside. All the 
blue points have a low occupancy probability close to zero. 
The red points should be classified as outside and have a 
high occupancy probability close to one.

The input points network uses the number of points 
K equals three times the 3D coordinates. The output 
for each K point is the involved probability value. The 
classification loss function assumes the ground truth 
occupies the label for each 3D point that trains the 
equation below. The loss function updates the prediction 
parameter Ø  while training.

 Loss(Ø )o = ∑
K

j=1
Loss(fØ(pij,xi), oij),

where K randomly sampled 3D points pij; oij observation 
dataset. 

Parameters Ø takes input 3D location, three coordinates, 
and a condition vector. The occupancy value of the 
reconstruction model at time equals zero. Compare this 

occupancy value to the actual occupancy in observations of 
the corresponding point location given the image condition 
corresponding to this label. Fig. 4 represents the shape only 
at a single point using a 3D occupancy network that can 
recover geometric detail. 

The mapping between the object space and the 3D 
space points is based on a signed distance-driven functional 
mapping. A sign-distance generator on the corresponding 
encodes is used to learn the 3D shape and correspondence 
field jointly. Signed-distance evaluates the texture field at 
this predicted surface point and inserts the color value at 
that corresponding pixel location. 

The time limitation of the traditional simple neural 
network, while dealing with the images, can affect the 
model performance. The number of operations performed 
will be significant, and we might need help handling them 
correctly. Identifying the features from the images permits 
us to reconstruct the presence of the object automatically 
in 3D. The BCNN allows the processing of many filters in 
parallel, significantly reducing time consumption. The only 
additional time is taken in the filter slice which is still much 
less than time would have taken by training a simple neural 
network. Fig. 5 shows the classification that produces labels 
for an image dataset containing single images. The dataset 
involves online images of radio, telephone, stairs, sink, car, 
bin, cabinet, and balcony stone. The results were obtained 
with a proposed model compared to novel view synthesis 
baselines.

Fig. 5 shows results that investigated the model power 
of representation 3D. The first raw is the ground truth 
example while the second shows label-encoded results. 
The third raw is to display the overfitting of the texture 
and object.

The accuracy measurement of the learning model 
calculated the number of data points detected correctly 
by comparing the image containing evidence with ground 
truth. These results are predicted from a single image by 
combining the implicit representations with primitive-

Fig. 3. BCNN occupies probability (a) detect grid points, (b) 
evaluate voxels and (c) mark surface points

Fig. 4. Mapping 3D point
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based shape models. The high accuracy of the model needs 
to be corrected in labeling and distinguishing between 
relevant and irrelevant data. Four measurements are applied 
to examine the results: precision, recall, chamfer-L1, and 
Intersection over Union (IoU). Precision is calculated by 
dividing the predicted label from the overall accurate label. 
Recall measures the number of relevant elements detected. 
The recall percentage gives the probability that a randomly 
selected relevant item from the data set will be detected. 
Distance chamfer-L1 calculates similarity between set 
point distance. IoU quantifies the similarity between the 
predicted bounding and the ground truth. Table displays the 
model evaluated by accurate measurements.

Precision and recall are calculated to select the 
suitable model. Recall quantifies the number of positive 
predictions from all positive examples in the data set. 
Find the intersection between the two boundaries and the 
second portion, the union between the ground truth and 
the predicted. IoU is used for evaluation in the field of 
object detection. Table displays the results of the generative 
model showing that latent space interpolations have the 
same appearance code for different geometry encoding. 
Smoothing applies acceptable geometric detail structures 

to overfit each object individually. In general, the approach 
time equals the ground truth object and the object deformed 
in the model; furthermore, the model can overfit multiple 
objects simultaneously.

Conclusion

 Proposed approaches generally optimize single 
images to transfer 3D knowledge. BCNN is a simple, 
fully connected architecture that merges local and global 
conditioning for real data. It is necessary to input a single 
image to learn features filter parameters, and then image 
maps in 3D points. Features are dependent on the 3D 
location of the points and the viewing direction. Train 
filters feature parameters using a reconstruction loss 
function on a data set that has realistic materials. The loss 
function takes the actual occupancy value and the classifier 
decision boundary. The loss function is learning weight 
correspondence information that enhances representing 
spatially encoded. The approach predicts a latent code for 
the image that gets reconstructed and overfitted results. 
Approach characteristics depend on the surface implicitly 
considered instead of the shape explicitly. 3D convolutions 
generate a 3D feature volume. The convolution train 
inputs filter parameters that will detect the associated 
features from the images. The texture produces field and 
voxelization of the object. BCNN then queries labels by 
signed distance from 3D points. The last layers detect the 
texture and associate it with a particular label in the image. 
Representing scenes as neural radiance fields uses volume 
rendering points behind and in front of the surface. The 
limitation of a fully connected network is that it is sensitive 
to a large data size, but it is suitable for a single image. The 
model doesn’t require discretization, and arbitrary topology 
is learned using 2D supervision BCNN. The BCNN is a 
powerful image model because it performs exceptionally 
well, and the reconstructions are precise and accurate. 

Fig. 5. Reconstruct 3D

Table. Accuracy measurements

Object Recall Precision Chamfer-L1 IoU

car 0.892 0.874 0.291 0.781
recycle bin 0.901 0.910 0.109 0.690
cabinet 0.868 0.849 0.251 0.589
balcony stone 0.859 0.861 0.194 0.609
telephone 0.871 0.880 0.201 0.698
radio 0.909 0.893 0.099 0.794
stair 0.790 0.802 0.301 0.805
sink 0.793 0.799 0.273 0.789
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