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Abstract 
This study presents an algorithm for the problem of detecting defects on hard surfaces when trained with zero or a small 
number of examples, addressing the challenge of limited data availability. The existing defect detection methodology 
using machine vision is enhanced. A hybrid approach is proposed, combining the strengths of the SSD detector and 
Siamese Neural Networks (SNN). The SSD detector extracts feature vector representations from images, while the 
SNNs are used to construct the feature space. The new approach demonstrates high accuracy in detecting both known 
and previously unseen defects in the training dataset. Based on testing across seven different datasets, the model showed 
good performance in scenarios with a limited number of training examples. A comparative analysis with existing models 
highlights the high performance of the proposed approach and its potential as an innovative and effective solution for 
the universal detection of defects on hard surfaces.
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Аннотация
Введение. Представлен алгоритм решения задачи обнаружения дефектов твердых поверхностей при 
обучении на нулевом или малом числе примеров, который решает проблему ограниченного объема данных. 
Усовершенствуется существующая методология обнаружения дефектов методом с использованием машинного 
зрения. Метод. Предложен гибридный подход, сочетающий преимущества SSD-детектора и сиамских нейронных 
сетей. SSD-детектор позволяет извлекать векторные представления признаков из изображений, а сиамские 
нейронные сети применяются для построения пространства извлеченных признаков. Основные результаты. 
Показано, что новый подход обладает высокой точностью как на известных, так и на не встречавшихся ранее в 
обучающей выборке дефектах. По результатам тестирования на 7 различных наборах данных представленный 
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алгоритм продемонстрировал хорошие возможности в сценариях с ограниченным числом примеров для обучения. 
Обсуждение. Сравнительный анализ с существующими моделями показал высокую производительность 
предлагаемого алгоритма и его потенциал как инновационного и эффективного решения задач универсального 
обнаружения дефектов твердых поверхностей.
Ключевые слова
компьютерное зрение, обнаружение дефектов, обучение с нулевым количеством примеров, обнаружение 
объектов, сиамские сети
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Introduction

The detection and precise localisation of objects in 
imag es or videos are fundamental tasks with diverse 
applications across industries, encompassing medicine 
[1], transportation [2], and retail [3]. Notable instances 
of object detection applications include automated face 
detection, traffic violation identification, and quality 
control in manufacturing illustrating the versatility of object 
detection technologies and propelling advancements in 
computer vision. Within the expansive domain of computer 
vision, defect detection emerges as a critical undertaking 
with profound implications for various sectors, spanning 
industrial production [4, 5] and medical diagnostics [6].

In practical industrial settings, pixel-level detection 
of defects translates into more understandable and usable 
metrics for engineers, such as defect type, its physical size, 
and depth. This research focuses only on defect detection 
on 2D images captured through the following pipeline. 
Typically, factories install cameras over conveyor belts 
with fixed height, focal length, and resolution to capture 
images. These images are then used to create datasets. 
Our solution processes these images, detects defects, and 
generates bounding boxes. The algorithm automatically 
converts these pixel coordinates into millimetres or other 
professional terms to meet manufacturing precision 
requirements. For instance, camera calibration, its 
height and resolution setup allow for conversion from 
pixel coordinates to real-world measurements, enabling 
engineers to accurately pinpoint defect locations. This 
pipeline ensures that our detection algorithms provide 
valuable data that can be seamlessly integrated into factory 
workflows, enhancing the overall efficiency and precision 
of quality control.

The ongoing challenge for researchers and practitioners 
lies in designing algorithms capable of adapting to the 
intricacies of specific domains. This study addresses 
the multifaceted challenges inherent in defect detection, 
particularly on solid surfaces, focusing on those defects 
that are visually observable without considering their depth 
where nuanced methodologies are essential for effective 
operation with limited data and adaptation to diverse defect 
patterns. Our primary objective is to introduce an innovative 
algorithm that excels in zero-shot and few-shot defect 
detection, surmounting the limitations of existing models.

To achieve this goal, we propose a novel defect 
detection methodology that seamlessly integrates the 
strengths of the Single Shot MultiBox Detector (SSD300) 
[7] and Siamese Neural Networks (SNNs) [8]. This 

approach aims to extract rich feature representations 
from images using SSD300 while the Siamese networks 
construct a feature space conducive to defect detection. Our 
model employs a distance-based defect detection method 
demonstrating commendable mean Average Precision 
(mAP) performance on familiar and previously unseen 
defect datasets.

In pursuit of our objectives, the study evaluates the 
proposed algorithm on seven distinct datasets, showcasing 
its predictive capabilities and robustness across diverse 
scenarios. We aim to contribute to developing a universal 
defect detection solution that accommodates limited data 
and offers real-time zero-shot detection.

The subsequent sections of this paper provide a 
comprehensive exploration of the landscape of defect 
detection methods, detail our proposed methodology, 
including the neural network architectures and the 
employed loss function, and present implementation 
details, results, and comparative analyses with existing 
solutions. Through this endeavour, we seek to illuminate the 
transformative potential of our approach in revolutionising 
defect detection on solid surfaces.

Related work s

Defect detection on solid surfaces is a critical task in 
various industrial settings. Accurate and efficient detection 
methods can significantly enhance manufacturing precision 
and operational efficiency. This paper evaluates the 
SSD300+Siamese approach for universal defect detection 
building upon the foundation of existing research and 
methodologies.

We conducted experiments using the North Eastern 
University Steel Surface Defects Database (NEUSSDD) 
[9], the Wood Defects dataset [10], and the MVTec 
Anomaly Detection Dataset [11]. These datasets present 
distinct challenges and encompass a range of defect classes 
making them suitable for comprehensive model assessment. 
The NEU dataset provides a benchmark for steel surface 
defects, the Wood Defects dataset includes a variety of 
wood surface flaws and the MVTec dataset is designed 
for anomaly detection in industrial inspection scenarios. 
The images in Fig. 1, 2, and 3 illustrate examples of the 
types of defects we aim to detect using our model. These 
examples highlight the diversity and complexity of defects 
in different materials, demonstrating the necessity for 
robust and adaptable detection methods.

The NEU dataset [9] consists of 1800 grayscale images 
of steel surfaces, with various manufacturing defects 
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occurring during production. Six defect categories are 
present: surface scratch, pitted surface, rolled-in surface, 
patches, inclusion, and crazing. This dataset is a benchmark 
for evaluating the model performance in detecting defects 
on steel surfaces.

The Wood Defects dataset [10] comprises over 43,000 
labelled images of wood surface defects, covering ten 
common defect types such as live knots, dead knots, 
cracks, resins, marrows, etc. The dataset includes semantic 

maps and bounding box labels for each image, facilitating 
semantic segmentation and localisation tasks. This 
dataset challenges the model with diverse defect patterns 
encountered in wood production.

The MVTec dataset [11] is designed to benchmark 
anomaly detection methods, focusing on industrial 
inspection scenarios. It comprises over 5,000 high-
resolution images across fifteen object and texture 
categories, each containing defect-free training images 
and test images with various anomalies. Pixel-precise 
annotations of anomalies provide a detailed evaluation of 
the model ability to detect and localise defects.

Building on the foundation of established methods, 
our research draws from several key works in the field. 
These studies form the basis for our approach and highlight 
the progress and challenges in defect detection on solid 
surfaces.

SSD300. The work by Liu et al. [7] introduced the 
SSD300, a pioneering method for object detection in 
images using a single deep neural network. SSD300 
discretizes the output space of bounding boxes into a set 
of default boxes over different aspect ratios and scales per 
feature map location. This approach eliminates the need for 
object proposal generation and subsequent pixel or feature 
resampling stages, making SSD300 easy to train and 
integrate into systems requiring a detection component. The 
method combines predictions from multiple feature maps 
with different resolutions to efficiently handle objects of 
various sizes. The SSD300 algorithm achieves comparable 
accuracy to methods with an additional object proposal 
step while being significantly faster. However, SSD300 is 
designed for generic object detection and may need to be 
optimised for the specific challenges of universal defect 
detection on solid surfaces.

The SSD300 architecture utilises a feed-forward 
convolutional network to generate bounding boxes and 
scores representing object class instances. Multi-scale 
detection is facilitated by appending convolutional feature 
layers to the truncated backbone progressively decreasing 
in size. For each feature layer, a set of convolutional filters 
produces detection predictions for category scores or shape 
offsets relative to default box coordinates. The SSD300 
model excels in object detection tasks but may not be 
tailored to the nuances of defect detection on solid surfaces.

While SSD300 is effective for generic object 
detection, its performance in defect detection scenarios 
with limited data and specific challenges of solid surfaces 
may be suboptimal. The model reliance on default box 
representations may not capture the intricacies of defects, 
necessitating a more specialised approach.

Fig. 1. Examples of NEU dataset defects

Fig. 2. Example of Wood Defects dataset defects

Fig. 3. Examples of MVTec dataset surfaces, with and without 
defects. Images containing defects are outlined in red, while 

others are outlined in green
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Signature Verification using a “Siamese” Time 
Delay Neural Network. The algorithm by Bromley et al. 
[8] proposes a signature verification method utilizing a 
SNN architecture. This structure comprises two identical 
sub-networks connected at their outputs, with the joining 
neuron measuring the distance between feature vectors 
extracted from two signatures. Signatures that fall within 
a distance threshold of the stored representation are 
accepted, while those beyond the threshold are rejected 
as forgeries. Although the Siamese network demonstrates 
proficiency in signature verification, its direct application 
to defect detection on solid surfaces may be limited due to 
differences in data characteristics.

The Siamese network developed for signature 
verification utilizes two identical sub-networks that process 
input signatures. The network measures the distance 
between feature vectors extracted from two signatures, 
allowing for effective verification. Training involves 
using a modified back propagation algorithm, and various 
architectures are tested for their performance in resisting 
forgeries and remaining insensitive to changes in signature 
characteristics.

While the Siamese network excels in signature 
verification, its direct application to defect detection on 
solid surfaces may face challenges. Signatures and defects 
have distinct characteristics, and the Siamese network 
may not capture the diverse visual patterns associated with 
defects. Additionally, its sensitivity to temporal features 
may not align with the static nature of defect images.

Detecting Object Defects with FCSNNs. Nagy and 
Czuni (2021) [12] present a convolutional SNN-based 
approach for defect detection, emphasising the network 
ability to generalise knowledge across different object 
classes without re-training. The Fusioning Convolutional 
Siamese Neural Network (FCSNN) introduced in this 
work leverages SNNs to recognise defects in new object 
types.

The FCSNN architecture involves feature extraction 
using pre-trained VGG16 models, fully connected 
layers, a fusion of features through concatenation, and 
the computation of a similarity score. The evaluation 
is performed on traffic signs and castings datasets, 
demonstrating competitive accuracy compared to other 
deep learning models.

While FCSNN exhibits strengths in defect detection, it 
is limited to binary classification and may face challenges 
when dealing with multi-class scenarios. Additionally, the 
reliance on pre-trained models and fusion strategies may 
limit its adaptability to diverse defect datasets.

Convolutional Ensembling based Few-Shot 
Defect Detection Technique. Karmakar et al. (2022) 
[13] propose a few-shot defect detection technique 
based on convolutional ensembling aiming for real-time 
implementation. The approach employs a knowledge base 
of pre-trained convolutional models and introduces a novel 
ensembling strategy to enhance accuracy while minimising 
parameter count.

The method combines ResNet 50, EfficientNet B5, 
and DenseNet 201 for feature embeddings. Features are 
reshaped, stacked, and processed through a convolutional 
block and a Multi-Layer Perceptron for classification. The 

ensembling strategy involves stacking and combining 
features from different feature extractors.

While the approach excels in few-shot scenarios, it 
may lack effectiveness in zero-shot defect detection. The 
reliance on pre-trained models and ensembling techniques 
may introduce computational overhead limiting its real-
time applicability in specific settings.

Few-shot learning combine attention mechanism-
based defect detection in bar surface. Lv and Song 
(2019) [14] proposed a deep learning-based approach to 
address the challenge of defect detection in the production 
process of bar steel. In this context, the conventional 
reliance on human eye observation prompted the need 
for an automated solution. The authors emphasised the 
advantages of deep learning methods, mainly unsupervised 
or weakly supervised techniques, which are more suitable 
for scenarios with limited samples, a common constraint 
in industrial settings.

The method introduced in the paper involves dividing 
images of the bar surface into fragments, computing 
features using a Convolutional Neural Network, and 
employing an attention mechanism to highlight crucial 
features while reducing the impact of noise. Few-shot 
learning is utilised to train the model on a small set of 
images with and without defects, enabling it to generalise 
to new images.

Despite its merits, the approach has limitations. 
It focuses on defect detection in the specific context of 
bar steel production and may not be readily adaptable to 
universal defect detection on solid surfaces. The reliance on 
few-shot learning might not be optimal for scenarios where 
the availability of labelled data is slightly more abundant, 
as in our study.

Siamese Basis Function Networks for Data-efficient 
Defect Classification in Technical Domains [15]. Siamese 
networks and radial basis function networks are used for 
data-efficient defect classification in technical domains. 
They focused on developing models using three specialised 
datasets and demonstrating general applicability to classical 
datasets.

The method involves training the model on a small 
dataset to generate basis functions which are then used 
to represent new data. The nearest neighbour method is 
employed for defect classification, determining the class 
of an unknown sample based on the closest sample from 
the training set.

While the proposed approach is practical for data-
efficient classification, it does not directly address the 
defect detection task. The method relies on the nearest-
neighbour approach which may not be suitable for scenarios 
where defects need to be detected and located precisely. 
Additionally, the emphasis on data efficiency might limit 
its performance when dealing with larger datasets.

Classification and Fast Few-Shot Learning of Steel 
Surface Defects with Randomized Network. Nagy and 
Czuni (2022) [16] present a classification and fast few-
shot learning method for steel surface defect detection. 
Their work addresses challenges related to a low number 
of available shots for new defect classes, catastrophic 
forgetting of known information, and the time-consuming 
nature of retraining or fine-tuning existing models.
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The authors introduce a novel architecture that 
combines EfficientNet deep neural networks with 
randomised classifiers. Random matrices serve as 
weighting factors for the neural networks, resulting in 
randomised neural networks. These networks are trained on 
a small dataset comprising several samples of each defect 
class. The authors propose the “Fast Few-Shot Learning” 
method to enable fast learning on new data, facilitating 
rapid adaptation to new classes with only a few samples.

Despite the success in achieving high classification 
accuracy, Nagy and Czuni’s approach is not designed 
for real-time defect detection. Additionally, the method 
focuses on classification rather than defect detection, and 
its reliance on random matrices may limit interpretability 
and generalisation.

Segment Any Anomaly without Training via Hybrid 
Prompt Regularization. Cao et al. (2023) [17] present 
a novel framework called Segment Any Anomaly + 
(SAA+) for zero-shot anomaly segmentation with hybrid 
prompt regularisation. The framework aims to enhance 
the adaptability of modern foundation models to anomaly 
segmentation tasks.

The proposed SAA+ framework leverages non-
parameter foundation models like Segment Anything 
to incorporate diverse multi-modal prior knowledge for 
anomaly localisation. Hybrid prompts, derived from 
domain expert knowledge and target image context, act 
as regularisations for adapting non-parameter foundation 
models to anomaly segmentation. The model performs 
state-of-the-art anomaly segmentation benchmarks in a 
zero-shot setting.

While successful in zero-shot anomaly segmentation, 
the SAA+ framework is not designed for real-time 
applications. It focuses on segmentation rather than 
defect detection, and its dependency on prompt-based and 
regularisation-based approaches may limit its effectiveness 
in scenarios with diverse defect classes and limited data.

Summary
While each method contributes significantly to defect 

detection on solid surfaces, our proposed SSD300+Siamese 
approach is a comprehensive solution. By seamlessly 
integrating real-time processing, zero-shot learning, and 
multi-class defect detection, our method addresses key 
aspects crucial for universal defect detection. A detailed 
description of our solution, experimental results, and 
comparative analysis will be presented in the subsequent 

sections, providing a comprehensive understanding of the 
strengths and advantages of our proposed approach.

M ethod

Our proposed defect detection methodology is a 
novel adaptation of the SSD300 architecture, aiming to 
achieve universal defect detection on solid surfaces. Our 
modified approach retains the SSD300 backbone but 
makes crucial adjustments to enhance defect detection 
capabilities. Specifically, we remove class prediction 
layers and introduce new layers before the bounding 
boxes localisation. These additional layers are pivotal 
in creating a feature space conducive to efficient defect 
pattern recognition.

A key aspect of our methodology is the integration of 
SNNs which are trained using the Triplet loss function. This 
training method involves three images: an anchor image 
representing the target object, a positive image depicting a 
similar object, and a negative image showcasing an object 
dissimilar to the anchor. Training the network on such 
triplets enables it to learn features that distinguish objects 
from one another, facilitating the identification of desired 
defect patterns. In our context, these patterns correspond to 
defects highlighted by bounding boxes.

The use of Siamese networks is particularly 
advantageous for our defect detection task due to their 
inherent ability to effectively handle and compare pairs of 
images. Unlike conventional fully connected layers, which 
process embeddings independently, Siamese networks are 
designed to focus on the relative similarities and differences 
between pairs of images. This is crucial for defect detection, 
where the key challenge lies in identifying subtle variations 
between defective and non-defective regions. By learning 
a discriminative feature space, Siamese networks enhance 
the model capability to differentiate between similar and 
dissimilar patterns, making them better suited for tasks that 
require high sensitivity to minor variations, such as defect 
detection on solid surfaces.

As depicted in Fig. 4, the resulting architecture 
consists of intermediate layers trained on image triples and 
bounding box search layers that utilise the feature space for 
defect pattern identification.

The architecture comprises the following key stages:
— SSD300 Backbone: The initial stage involves the 

transfer of the input image to the model, generating 

Fig. 4. SSD300+Siamese Networks for Defect Detection
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vectors for each bounding box without offsets. These 
vectors provide a preliminary representation of potential 
defect locations.

— Searching: In this stage, the obtained vectors are 
compared with examples of defects pre-given to the 
model. The closest vector in the feature space becomes 
the target vector representing the most similar example. 
This process enables efficient search and identification 
of defect patterns.

— Concatenation: The obtained vector is concatenated 
with the found template vector enriching the feature 
representation. This step ensures the model captures and 
integrates relevant information from the input image 
and the learned defect patterns.

— Linear Layer: The concatenated vector undergoes a linear 
layer operation to obtain offsets for the corresponding 
bounding box, refining localisation. This layer 
introduces fine-tuning to align the model predictions 
with the precise location of defects in the image.

— Non-Maximum Suppression (NMS): Overlapping boxes 
and those with uncertainty are filtered out in this stage, 
improving precision. NMS is a critical post-processing 
step that ensures the final set of predicted bounding 
boxes is accurate, non-redundant, and well-localised. 
It helps eliminate duplicate detections and selects the 
most confident predictions by retaining the one with the 
highest confidence score while suppressing others with 
significant overlap.
Training Process
Labelled examples of each defect class must be loaded 

to ensure the effective operation of the model. This step is 
critical as it allows the model to extract essential features 
for defect detection on unseen data. The loaded examples 
are converted into feature vectors, serving as templates for 
defect patterns.

The model generates 8,732 vectors for each image, each 
representing features of a different part of the image. These 
vectors are compared with template vectors, and similar 
ones are saved as templates with the vector class indicated. 
Vectors far from the templates in the feature space are 
excluded from further processing. The distance threshold at 
which a vector is considered distant is a parameter.

Performance Evaluation
In our evaluation, we utilise the mAP metric at the 

Intersection Over the Union (IoU) threshold of 50 %, 
referred to as mAP50. This metric comprehensively 
measures the model precision and recall, considering the 
overlap between predicted bounding boxes and ground 
truth annotations. A mAP score of 50 % indicates a 
moderate level of overlap between predicted and ground 
truth bounding boxes. The choice of mAP50 as the primary 
evaluation metric was driven by the specific requirements 
of our task, where detecting defects is more important than 
precisely defining their boundaries. mAP50 is particularly 
suitable in this context as it prioritises successful detection 
over exact localisation. In contrast, mAP95, which demands 
higher boundary precision, is unnecessarily strict for our 
purposes and may penalise minor localisation errors that 
don’t impact the overall outcome. Thus, mAP50 provides 
a more relevant and effective measure for evaluating our 
model performance.

With a focus on experiments and results, the subsequent 
section will delve into a detailed exploration of the 
performance of our proposed defect detection methodology 
across various datasets. The experimental outcomes will 
provide insights into the model effectiveness in addressing 
challenges such as limited data, diverse defect patterns, 
and real-time detection requirements. The presented results 
aim to substantiate our approach transformative potential in 
universal defect detection on solid surfaces.

Experiments and results

Datasets
To  evaluate the proposed SSD300+Siamese approach 

for universal defect detection on solid surfaces, we 
conducted experiments on two training datasets 
(NEUSSDD [9] and Wood Defects dataset [10]). 
Additionally, we tested the model on the MVTec Anomaly 
Detection Dataset [11]. Each dataset presents distinct 
challenges and encompasses a range of defect classes, 
making them suitable for comprehensive model assessment.

Additionally, the model was tested on four unseen 
datasets, namely Wheat leaf dataset1, Meat dataset2, Car 
defect dataset3, and MSWeldDefect dataset4, to assess its 
generalisation capabilities further. The examples of the 
types of defects presented in these datasets are presented 
in Fig. 5. The subsequent section will present the detailed 
outcomes obtained from these experiments.

Training
The training process involved two primary datasets, 

NEU Steel Surface Defects and Wood Defects, and utilised 
a pre-trained SSD300 model on ImageNet. The model 
underwent training for 100 epochs, employing a weighted 
sum of IoU loss and Triplet loss. The Triplet loss facilitated 
the creation of a feature space conducive to efficient defect 
pattern recognition.

During training, null vectors were created for each 
class in the model, later replaced by vectors obtained from 
the SSD300. This enabled the model to develop triplets 
independently from different sources supporting multi-
dataset training. An iterative example of saving vectors 
during training is illustrated in Fig. 6.

Model Metrics on Trained Datasets
The model performance was evaluated on the NEU, 

Wood, and MVTec datasets using varying numbers of 
templates. The mAP at 50 % IoU (mAP50) was employed 
as the evaluation metric, providing insights into the 
precision and recall of the defect detection.

As presented in Table 1, results highlight the model 
varying performance depending on the dataset and 

1 Available at: https://www.kaggle.com/datasets/
olyadgetch/wheat-leaf-dataset (accessed: 30.10.2024). 

2 Available at: https://www.kaggle.com/crowww/meat-
quality-assessment-based-on-deep-learning (accessed: 
30.10.2024).

3 Available at: https://www.kaggle.com/knightnikhil/
cardefect (accessed: 30.10.2024).

4 Available at: https://www.kaggle.com/datasets/ruthka/
maskrcnn-mswelddefect (accessed: 30.10.2024).

https://www.kaggle.com/datasets/olyadgetch/wheat-leaf-dataset
https://www.kaggle.com/datasets/olyadgetch/wheat-leaf-dataset
https://www.kaggle.com/crowww/meat-quality-assessment-based-on-deep-learning
https://www.kaggle.com/crowww/meat-quality-assessment-based-on-deep-learning
https://www.kaggle.com/knightnikhil/cardefect
https://www.kaggle.com/knightnikhil/cardefect
https://www.kaggle.com/datasets/ruthka/maskrcnn-mswelddefect
https://www.kaggle.com/datasets/ruthka/maskrcnn-mswelddefect
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the number of templates provided. Notably, the model 
demonstrated exceptional accuracy in detecting defects 
on the NEU dataset, showcasing its effectiveness in 
handling diverse steel surface anomalies. These results 
underscore the model adaptability to specific datasets and 
the importance of providing adequate templates for more 

intricate defect classes. Fig. 7 demonstrates the model 
ability to accurately detect defects in Wood and MVTec 
datasets, highlighting its robustness and adaptability across 
various materials.

Cross-Dataset Testing
Cross-dataset testing was conducted on datasets the 

model had not been explicitly trained on to assess the 
model generalisation capabilities. As shown in Table 2, the 
results indicate the model accuracy in detecting defects on 
different datasets, showcasing its potential for real-world 
applications.

The results of Table 2 show that the model exhibits 
a high level of accuracy in detecting defects in specific 
datasets. At the same time, its performance is comparatively 
lower in more complex datasets such as those containing 
leaves. These results indicate that the model performs 
well in processing simple data that does not include many 
details.

Real-time Processing Speed
To evaluate the real-time capabilities of the model, a 

speed analysis was performed on the NEU dataset, varying 

Fig. 5. Car defect, Meat, MSWeldDefect and Wheat leaf datasets examples

Fig. 6. An example of searching for a similar defect among the templates

Fig. 7. Example results from the Wood and MVTec datasets. 
The identified defects are highlighted with red bounding boxes

Table 1. Metrics for different datasets, s is the number of samples given to the model

Dataset 5 s, mAP50 10 s, mAP50 15 s, mAP50 20 s, mAP50

MVTec 0.51 0.67 0.72 0.81
NEU 0.62 0.75 0.84 0.92
Wood 0.64 0.77 0.89 0.91
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the number of templates provided. As depicted in Fig. 8, 
the model demonstrated impressive real-time processing 
capabilities even with a substantial number of templates. 
Testing was done on an RTX 3090.

The results in Fig. 8 highlight the model efficiency. It 
maintains real-time processing capabilities across various 
template quantities, making it suitable for practical, 
dynamic applications.

Comparative Analysis
A comparative analysis with existing defect detection 

models is presented in Table 3, emphasising key attributes, 
such as real-time processing, zero-shot learning, and multi-
class defect detection. The models presented in Table 3 
were introduced in the studies discussed in the Related 
works section.

Due to the differences in the datasets used and 
experimental conditions, reproducing the results of other 
works is challenging. Our solution implements aspects 
not found in any of the previous works, such as the 
combination of real-time processing, zero-shot learning, 
and multi-class defect detection in a single framework. 
Therefore, it is impossible to conduct a quantitative 
analysis directly comparing our approach with existing 
methods. Nonetheless, the comparative analysis provided in 
Table 3 reinforces the innovative and versatile nature of our 
proposed methodology, highlighting its unique strengths 
in addressing the challenges of defect detection on solid 
surfaces.

Table 3 highlights the unique strengths of our 
proposed SSD300+Siamese approach, excelling in real-
time processing, zero-shot learning, and multi-class 
defect detection. As demonstrated in Table 3, none of the 
presented models, except for our proposed approach, can 
achieve real-time multi-class detection, particularly in zero-
shot learning. This analysis underscores the significance 
of our contribution to the field and the potential of our 
methodology as a comprehensive solution for universal 
defect detection.

Conclusion and Discussion

In this study, we introduced an innovative 
SSD300+Siamese approach for universal defect detection 
on solid surfaces, leveraging the strengths of the SSD300 
architecture for object detection and Siamese networks 
for feature learning. The model showcased exceptional 
accuracy across diverse datasets, emphasising its robust 
performance on explicitly trained datasets, including 
the NEU Dataset for steel surfaces and a Wood Surface 
Defects Dataset. Cross-dataset testing further underscored 
the model adaptability to new datasets, affirming its 
potential for real-world applications. Our proposed 
approach demonstrates a novel solution for universal defect 
detection, with distinguishing features, such as real-time 
processing capabilities, proficiency in zero-shot learning, 
and the ability to perform multi-class defect detection. 
These aspects set our model apart from existing solutions, 
positioning it as a cutting-edge contribution to universal 
defect detection. However, the evaluation of data and 
concept drift was not extensively covered in this study, 
and additional experiments are needed to assess these 
aspects, which could be a focus of future research. We 
also considered the application of transformer models; 
however, their effective implementation typically requires 
significant amounts of training data. Given the current 
limited dataset, we chose to focus on methods better suited 
to these constraints.

Table 2. The model performance on the data it was not trained 
on using 10 samples to construct embeddings

Test dataset Result, accuracy

Wheat leaf 0.68
Meat 0.99
Car defect 1.0
MSWeldDefect 1.0

Fig. 8. The dependence of the algorithm speed on the number of 
templates

Table 3. Comparison with existing solutions

Model Real-time Zero-shot Multi-class Detection

FCSNN [12] + — — —
ConvEnsembling [13] + — + —
CombAttention [14] — — + +
SBFN [15] + — + —
RandNet [16] + — + —
HPR [17] — + — +
SSD300+Siamese + + + +
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Future research may explore the use of transformers 
as data availability increases, potentially yielding further 
improvements in defect detection performance. Further 
research may also investigate more precise region-of-

interest extraction, refinement of the Siamese network for 
enhanced computational efficiency, and transfer learning 
techniques to facilitate the model adaptation to new 
datasets.
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