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Abstract
Error correction during data storage, processing, and transmission allows for ensuring data integrity. Channel coding 
techniques are used to counteract these errors. Noise in real systems is often correlated, whereas traditional coding 
and decoding approaches are based on decorrelation which in turn reduces the performance limits of channel coding. 
Polar codes, adopted as a coding scheme in the modern fifth-generation communication standard, demonstrate low 
error probabilities during decoding in memoryless channels. The current task is to investigate the suitability of polar 
codes for channels with memory, analyze their burst error-correcting capabilities, and compare them with known error-
correcting coding methods. To evaluate burst error-correcting capability, the method of calculating the ranks of each 
submatrix of the parity-check matrix of a fixed-size polar code is used. The burst error-correcting capability of polar 
codes can be improved through a proposed interleaving procedure. The analysis of the burst error-correcting capability 
is carried out for short-length polar codes. An analysis of the burst error-correcting capability of polar codes has been 
performed. A comparison of burst error-correcting capabilities of polar codes with codes defined by random generator 
matrix, Gilbert codes and low-density parity-check codes was conducted. An analysis of the decoding error probability 
shows that standard polar code decoding algorithms do not achieve low error probabilities. The same decoding error 
probability 0.01 as for Gilbert channel is achieved by polar code in binary symmetric channel with an unconditional 
error probability two times as high. From the analysis, it can be concluded that the burst error-correcting capability of 
standard polar codes is low. The proposed interleaving approach improves the burst error-correcting capability and allows 
achieving values close to the Reiger bound. Further research directions may include developing decoding algorithms 
for polar codes adapted for channels with variable packet lengths
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Аннотация  
Введение. Исправление ошибок, возникающих при хранении, обработке и передаче данных позволяет 
обеспечивать их целостность. Для противодействия этим ошибкам используются методы канального 
кодирования. Возникающий в реальных системах шум часто имеет коррелированный характер, в то время как 
традиционные подходы к кодированию и декодированию основаны на декорреляции, что приводит к снижению 
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предельных характеристик канального кодирования. Полярные коды, принятые в качестве схемы кодирования 
в современном стандарте связи пятого поколения, показывают низкие вероятности ошибки при декодировании 
в каналах без памяти. Актуальной является задача исследования пригодности полярных кодов для каналов 
с памятью, анализа их пакетной корректирующей способности, а также сравнение с известными методами 
помехоустойчивого кодирования. Метод. Для оценки пакетной корректирующей способности использован 
метод вычисления рангов каждой из подматриц проверочной матрицы полярного кода фиксированного размера. 
Увеличение пакетной корректирующей способности полярного кода возможно с помощью предложенной 
процедуры перемежения. Анализ пакетной корректирующей способности полярных кодов проводится для 
кодов небольшой длины. Основные результаты. Выполнен анализ и сравнение пакетной корректирующей 
способности полярных кодов с кодами, определяемыми случайной порождающей матрицей, кодами Гилберта и 
низкоплотностными кодами. Анализ вероятности ошибки декодирования показал, что стандартные алгоритмы 
декодирования полярных кодов не позволяют достигать малых вероятностей ошибок. Такая же вероятность 
ошибки декодирования 0,01, как и для канала Гилберта, достигается полярным кодом в двоичном симметричном 
канале с большей, чем в два раза безусловной вероятностью ошибки. Обсуждение. Результаты исследования 
показывают, что пакетная корректирующая способность стандартных полярных кодов мала. Предложенный 
подход с перемежением улучшает пакетную корректирующую способность и позволяет достичь значений, 
близких к границе Рейгера. Направлением дальнейших исследований может быть разработка алгоритмов 
декодирования полярных кодов, адаптированных для каналов с длиной пакетов, имеющих случайную длину.
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Introduction

Information in the modern world is one of the key 
resou rces. The procedures of processing, transmitting, 
and storing information are often accompanied by 
the occurrence of errors. These processes are modeled 
mathematically, and errors are often dependent, leading 
to the formation of error bursts or memory in the channel. 
In the absence of error dependence, it is assumed that 
the channel has no memory. The memory effect in data 
transmission channels can be caused by various physical 
characteristics, such as multipath propagation, signal 
scattering, or the peculiarities of data storage equipment 
[1]. Among the widely used mathematical models for 
describing channels with memory are the Gilbert channel, 
the Gilbert-Elliott channel, and the Rayleigh fading channel 
with dependent fading, inter-symbol interference channel 
models, and others. To correct errors, coding theory 
offers the use of error-correcting codes, which introduce 
redundancy into the data to enable error detection and 
correction. Reliability issues, including the introduction 
of information redundancy, are a crucial task in the 
development of info communication systems [2, 3].

Polar codes, proposed by Erdal Arikan in 2009 [4], 
became the first codes with a clear construction capable 
of asymptotically achieving the capacity of a symmetric 
channel with simple encoding and decoding procedures. 
Recently, interest in polar codes has significantly increased 
due to their inclusion in the fifth-generation wireless 
communication standard, where they are particularly used 
for control channel coding. The theoretical analysis of 
polarization properties for channels with memory has been 
examined in [5, 6].

This paper will investigate the burst error-correcting 
capabilities of polar codes, with a focus on their application 

in channels with bursts. A comparison of the burst error-
correcting capabilities of polar codes with other error-
correcting methods will be presented, along with an 
analysis of the decoding error probability of polar codes in 
channels with memory. The results will also be compared 
with those obtained using other error-correcting methods.

Channels with memory

Let X and Y be the alphabets of the input and 
output symbols of the channel, respectively. This work 
considers discrete-time channels, i.e., channels where 
the transmission and reception of messages occur at 
discrete moments in time. A communication channel is 
defined by a set of transition probabilities p(y|x) for any 
x ∈ X, y ∈ Y. Let x = [x0, …, xN–1] and y = [y0, …, yN–1] 
be sequences of length N at the input and output of the 
channel, respectively. The effect of noise in the channel on 
the transmitted information is described by an error vector 
e such that y = x + e. Formally, a memoryless channel is 
defined as a channel for which the following holds [7]:

 p(y|x) = ∏
N–1

i=0
p(yi|xi).

One common type of memoryless channel is the Binary 
Symmetric Channel (BSC), described by the transition 
error probability pe with the input and output alphabets 
X = Y = {0, 1}.

One of the key characteristics of a communication 
channel is its transmission rate. The channel capacity 
refers to the maximum data transmission rate at which 
communication can be reliable, meaning with an arbitrarily 
low error probability. C. Shannon proved that there exist 
coding methods that can ensure reliable communication at 
rates approaching the channel capacity. It was also shown 
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that the capacity of a channel with memory exceeds the 
capacity of a channel where memory is not accounted 
for (e.g., when channel decorrelation is applied using 
interleaving).

As mentioned earlier, in real communication channels, 
transmission errors are not independent. The causes of 
dependency between symbols can include the physical 
properties of the channel, such as signal multipath 
propagation in fading and scattering channels, the physical 
principles of information storage, or the organizational 
structure in data storage systems. The simplest model 
describing a channel with memory is a two-state channel 
model. Within the two-state model, one can consider a 
Markov model, the Gilbert model [8], and the Gilbert-
Elliott (GE) model [9].

The GE model was proposed by E. Elliott in 1963 and 
is a generalization of the Gilbert channel model introduced 
in 1960. The GE model describes a discrete channel with 
memory, where the transition to the next state is determined 
by the previous state. We will use traditional notations 
for this model, where the GE channel is described by two 
states: “good” (G) and “bad” (B). In the “good” state, the 
probability of a bit error in the channel is pG, and in the 
“bad” state, it is pB. In the Gilbert model, it is assumed 
that pG is always equal to zero. Let the probability of 
transitioning from the “good” state to the “bad” state 
be denoted as PGB, and the probability of transitioning 
from the “bad” state to the “good” state as PBG. The 
unconditional probabilities of being in states B and G are

 PB = 
PGB

PGB + PBG
 , PG = 

PBG

PGB + PBG
.

Using the transition probabilities of the GE channel, 
the unconditional bit error probability can be calculated as:

 pe = pBPB + pGPG = 
pBPGB + pGPBG

PGB + PBG
. (1)

If an infinite-length interleaving procedure is applied to 
the output of the channel described by the two-state model, 
a memoryless channel is obtained, which is described by 
the BSC model with the transition probability (1). Such a 
channel will hereafter be referred to as equivalent (to the 
original two-state channel), and the value pe will be referred 
to as the equivalent error probability.

Bur st error-correcting capability of linear codes

In channels with memory, the error vector represents 
a burst, meaning an error vector in which non-zero 
elements tend to group together. The article examines 
bursts of length l, defined as vectors in which all non-zero 
components are located in l consecutive positions, with 
the first and last positions being non-zero. For example, 
the error vector e = (0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0) 
represents a burst of length 6. A linear code capable of 
correcting all error bursts of length l or less, but not all 
bursts of length l + 1, is called a code correcting error 
bursts of length l, or a code with a burst error-correcting 
capability of l. When correcting bursts at a given code 

length n, number of information symbols k, and burst error-
correcting capability l, the goal is to construct a code (n, k) 
with the smallest possible redundancy (the number of check 
symbols) r = n – k. Next, we will establish certain limits on 
n – k for a given l or on l for a given n – k [10].

A necessary condition for a linear code (n, k) to correct 
all error bursts of length l or less is that no burst of length 
2l or less can be a codeword. The number of check symbols 
in a linear code (n, k) which contains no bursts of length b 
or less as codewords, must be at least b (i.e. n – k ≥ b). 
The number of check symbols in a code correcting error 
bursts of length l must be at least 2l, i.e., n – k ≥ 2l. For 
given n and k, this implies that the burst error-correcting 
capability of the (n, k) code is no more than ⎣(n – k)/2⎦, 
or l ≤ ⎣(n – k)/2⎦. This is the upper bound on the burst 
error-correcting capability of a linear code (n, k), known 
as the Reiger bound. Codes that meet the Reiger bound 
are considered optimal. The ratio z = 2l/(n – k) is used as a 
measure of the burst error-correcting efficiency of the code. 
An optimal code has a burst error-correcting efficiency of 
one.

The following approach can be used to assess the burst 
error-correcting capability of a linear code [11]. The burst 
error-correcting capability of a code with a parity-check 
matrix H is the maximum l for which any matrix formed 
by two submatrices of l consecutive columns of H has 
a rank equal to 2l. By successively reducing the value 
of l from ⎣(n – k)/2⎦ and considering all possible pairs of 
submatrices, the maximum correctable burst length lmax can 
be found with polynomial complexity. From the described 
procedure, it follows that for a code to correct error bursts 
of length l, the code must not only lack codewords forming 
bursts of length 2l, but also codewords forming two bursts 
of l symbols.

Modern communication standards employ various 
error-correcting code constructions that help ensure reliable 
data transmission in the presence of noise and distortions. 
Among the most common are Low-Density Parity-Check 
(LDPC) codes and polar codes. The error-correcting 
performance of these constructions has been widely studied 
for memoryless channels, but the study of the properties of 
codes and their error-correcting performance in channels 
with memory is a less developed topic.

The burst error-correcting capability of LDPC codes 
based on block-permutation construction has been studied 
in the literature. It is known that for a block-permutation 
LDPC code with zero blocks, the correctable burst 
length cannot exceed the block size. The burst error-
correcting capability of LDPC codes constructed using the 
Progressive Edge Growth (PEG) algorithm was evaluated 
in [12]. The burst error identification problem for LDPC 
codes was investigated in [13]. Decoding of polar codes 
without channel state information knowledge is considered 
in [14].

Polar code and its burst error-correcting capability

Polar codes belong to the class of binary linear block 
codes. The encoding procedure of polar codes is based 
on channel polarization, which is described by a linear 
transformation defined by the matrix G = F⊗m, where  
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F = �1 0
1 1

� is the polarization kernel, and ⊗m denotes 

the m-fold Kronecker product of matrix F with itself, 
where m = log2n, and n is the length of the codeword of 
the constructed code. A polar code is defined by a set of 
parameters (n, k, Ac), where n is the codeword length, k 
is the number of information symbols, and Ac is the set 
of “frozen” symbols whose values are predetermined, 
usually equal to zero, with |Ac| = n – k, Ac ⊂ {0, …, n – 1}. 
Methods for constructing polar codes are detailed in [15]. 
One of the most common approaches to constructing the set 
of frozen symbols is the Polarization Weight (PW) method. 
It should be noted that the well-known Reed-Muller (RM) 
codes from coding theory can also be described as polar 
codes.

The non-systematic encoding of polar codes is 
described by the expression x = uG, where x is a codeword, 
u is a vector including the information symbols (ui ∉ Ac, 
1 ≤ i ≤ n) and “frozen” positions (ui ∈ Ac, 1 ≤ i ≤ n).

The classic method for decoding polar codes is the 
successive cancellation algorithm which does not provide 
maximum likelihood decoding and has a relatively high 
error probability. To reduce the error probability of 
decoding polar codes, I. Tal and A. Vardy [15] proposed 
the list decoding algorithm, which involves considering 
multiple paths at each level of the tree, with the maximum 
number of paths limited by the algorithm parameter L. 
List decoding with a sufficiently large L approaches near-
maximum likelihood decoding.

We will now analyze the burst error-correcting 
capability of polar codes defined by the matrix GN = F⊗n. 
Fig. 1 shows an example of the generator matrix of a 
(64, 42) RM code. As can be seen from the figure, the 
rows of the generator matrix form short-length bursts. Thus, 
the very procedure for constructing the generator matrix 
of a polar code results in a structure with low correcting 
capability for burst errors.

Next, let’s consider the possibility of constructing codes 
with improved burst error-correcting capability based on 
the polar code structure. We apply a random interleaving 
procedure, defined by the random permutation of the 
columns of the polar code generator matrix, resulting in 
a code referred to as equivalent to the polar code. It is 
known that switching to an equivalent code via interleaving 

preserves the code minimum distance (i.e., does not 
alter its ability to correct independent errors), but it can 
significantly impact the value of lmax. Fig. 2 presents the 
results of calculating the burst error-correcting capability 
of the RM code, which is a special case of a polar code, 
with length n = 64 and various values of r = {22, 42, 57}. 

The figure also shows a line corresponding to the 
Reiger bound. The burst error-correcting capability for the 
original code without interleaving is depicted in the figure 
with the symbol “○”, and for the interleaved codes with the 
symbol “*”. As can be seen from the figure, interleaving 
increases the burst error-correcting capability and yields 
codes with lmax values close t o the Reiger bound and with 
greater efficiency z.

Comparative analysis of burst error-correcting 
capability of code constructions

In this section, we compare the burst error-correcting 
capability of polar codes (RM and PW constructions), their 
equivalent codes, and several other code constructions: 
codes defined by a random generator matrix, Gilbert codes 
specified by a (2 × 3) block-permutation parity-check 
matrix, and LDPC codes constructed using PEG algorithm. 
Similar to polar codes, we also consider equivalent codes 
for these constructions. To build equivalent codes, samples 
of 100 random permutations was generated.

Fig. 3 shows the burst error-correcting capability for 
random codes and Gilbert codes. For clarity, only some of 
the results for equivalent codes are displayed in the figures. 
Since a code equivalent to a random code is still a random 
code, we observe a small scatter of lmax values in Fig. 3, a. 
It is worth noting that random linear codes are located near 
the Reiger bound. Fig. 3, b shows the results for Gilbert 
codes. The considered Gilbert codes lie on the Reiger 
bound, as confirmed by the experiments. Their equivalent 
codes disrupt the block-permutation structure, leading to a 
sharp decrease in burst error-correcting capability.

Fig. 4 shows the results for the PEG construction and 
Reed-Muller codes. The burst error-correcting capability 
of PEG codes is quite close to the Reiger bound. In rare 

Fig. 1. Example of a generator matrix of a (64, 42) polar code
Fig. 2. Burst error-correcting capability of the Reed-Muller 

code and equivalent codes
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cases, equivalent codes slightly increase the length of the 
correctable burst, but more often, interleaving degrades 
the burst error-correcting capability. Reed-Muller codes, as 
noted earlier, exhibit extremely low lmax values, but these 
can be significantly increased through interleaving.

Fig. 5, a presents the results for the PW polar code 
construction. The results are similar to those of RM codes 
in Fig. 4, b.

Fig. 5, b provides comparative results for all the 
considered constructions with parameters n = 128, k = 64 
(results for codes with other parameters are similar). As 
can be seen from the figure, while polar codes initially 
have an extremely low correctable burst length, they can be 
improved with interleaving. The resulting equivalent polar 
codes have a burst error-correcting capability comparable 
to other constructions and are close to the Reiger bound.

It should be noted that existing decoding methods for 
polar codes are tailored to their structure and cannot be 
applied to equivalent codes. Thus, the obtained results 
enable the construction of error-correcting codes based on 
polar codes that can be effectively used for correcting single 

burst errors. However, decoding such codes remains an 
open challenge, or general burst error-correcting algorithms 
may need to be applied [16].

Experimental results of polar codes error correction 
capability in channels with memory

In the previous section, we compared various code 
constructions based on their burst error-correcting 
capability. Maximizing burst error-correcting capability 
is useful when the channel does not produce bursts longer 
or more severe than the code can correct. However, in 
many channel models with memory, including the GE 
channel model with two states, burst length and burst 
severity are random variables. For this reason, burst error-
correcting capability is an indirect characteristic describing 
the code error-correcting properties. Therefore, we will 
analyze the decoding error probability of polar codes with 
various decoding parameters in the Gilbert channel. Using 
simulation, we will compare the obtained error probability 
estimates with the error probability in a BSC with a 

Fig. 3. Estimates of burst error-correcting capability for (a) codes defined by a random generator matrix and (b) Gilbert codes

Fig. 4. Estimates of burst error-correcting capability for (a) low-density codes based on the PEG construction and (b) Reed-Muller 
codes with n = 128
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transition probability equivalent to the error probability 
pe (1). The decoding of polar codes is performed using 
the CRC-Aided Successive Cancellation List (CA-
SCL) algorithm with a list size L and a CRC polynomial 
gcrc = x8 + x7 + x6 + x4 + x2 + 1. The PW procedure is used 
to construct the polar code.

We will examine the decoding error probability as a 
function of the equivalent bit error probability pe in the 
channel. The values of pe will be obtained by fixing the 
parameters PGB = 0.01, pG = 0, and pB = 0.5 in equation (1), 
and varying PBG. These simulation parameters correspond 
to the use of a Gilbert channel. Fig. 6 shows the decoding 
error probability with list size L = 8 for a polar code with 
parameters n = 256, k = 128 in the Gilbert channel (G) 
and the BSC with corresponding values of pe. Dotted 
curves are also presented, showing the probability that 
the burst length b generated by the channel will exceed 
the burst error-correcting capability. Let us denote the 
burst error-correcting capability of the code, according 

to the Reiger bound, as bR. Let the burst error-correcting 
capability calculated using the algorithm described in [11] 
be denoted as bP. Then, the probabilities that the burst 
length generated by the channel will exceed the respective 
burst error-correcting capabilities bR and bP are denoted as 
Pr(b > bR) and Pr(b > bP). 

Although at high error probability intervals, decoding 
in the BSC lags behind in terms of error probability 
compared to the Gilbert channel, the error probabilities in 
this range are quite high (close to one). As the equivalent 
error probability decreases, the BSC results significantly 
outperform those for the Gilbert channel. It is important to 
consider that the BSC simulation with transition probability 
(1) assumes infinite-length interleaving, and with a limited 
buffer size, error probabilities would be higher. Overall, it 
can be concluded that polar codes traditionally used with 
the classic decoder perform poorly in the presence of error 
bursts. This conclusion is consistent with the analysis of the 
burst error-correcting capability of polar codes. Moreover, 
as indicated by the results of the dotted curves, i.e., the 
probability that the burst length in the channel exceeds the 
burst error-correcting capability, even if the decoder were 
correcting bursts, in channels with random burst lengths, 
this would not ensure low decoding error probability due 
to the high probability of exceeding the burst-correcting 
limit. This means that in special channels with fixed burst 
lengths, burst error-correcting capability needs to be 
increased (for which interleaving was proposed). However, 
in channels with random burst lengths, this is insufficient, 
and a decoder is needed that not only corrects bursts but 
also corrects error patterns specific to Gilbert and GE 
channels. 

Fig. 7 show the decoding error probability graphs for 
polar codes with lengths n = 64 and n = 256 and rates 
R = {1/4, 1/2, 3/4}. The list size used for decoding is 
L = 8. The results obtained at rates 1/4 and 3/4 generally 
correspond to those obtained earlier for rate 1/2, as shown 
in Fig. 6.

Fig. 5. Estimates of burst error-correcting capability for n = 128 (a) Polarization Weight polar codes and (b) comparing different 
constructions

Fig. 6. Comparison of decoding error probability for a polar 
code with n = 256, k = 128 and different list sizes L in the 

Gilbert channel and BSC
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Conclusion

In this study, we evaluated the burst error-correcting 
capabilities of polar codes in channels with memory and 
compared them to other error-correcting coding methods. 
Our analysis revealed that, while standard polar codes 
exhibit low burst error-correcting performance, this 
limitation can be significantly improved by applying an 
interleaving procedure. The proposed interleaving method 

enhances the error-correcting capability, bringing it closer 
to the Reiger bound. Additionally, we found that traditional 
polar code decoding algorithms do not perform well in 
channels with correlated noise. These results highlight 
the need for further research into decoding algorithms 
specifically adapted for channels with memory and variable 
packet lengths, aiming to optimize error correction in 
practical scenarios where noise is not memoryless.

Fig. 7. Decoding error probability for: n = 64 (a); n = 256 (b)
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