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Abstract

Error correction during data storage, processing, and transmission allows for ensuring data integrity. Channel coding
techniques are used to counteract these errors. Noise in real systems is often correlated, whereas traditional coding
and decoding approaches are based on decorrelation which in turn reduces the performance limits of channel coding.
Polar codes, adopted as a coding scheme in the modern fifth-generation communication standard, demonstrate low
error probabilities during decoding in memoryless channels. The current task is to investigate the suitability of polar
codes for channels with memory, analyze their burst error-correcting capabilities, and compare them with known error-
correcting coding methods. To evaluate burst error-correcting capability, the method of calculating the ranks of each
submatrix of the parity-check matrix of a fixed-size polar code is used. The burst error-correcting capability of polar
codes can be improved through a proposed interleaving procedure. The analysis of the burst error-correcting capability
is carried out for short-length polar codes. An analysis of the burst error-correcting capability of polar codes has been
performed. A comparison of burst error-correcting capabilities of polar codes with codes defined by random generator
matrix, Gilbert codes and low-density parity-check codes was conducted. An analysis of the decoding error probability
shows that standard polar code decoding algorithms do not achieve low error probabilities. The same decoding error
probability 0.01 as for Gilbert channel is achieved by polar code in binary symmetric channel with an unconditional
error probability two times as high. From the analysis, it can be concluded that the burst error-correcting capability of
standard polar codes is low. The proposed interleaving approach improves the burst error-correcting capability and allows
achieving values close to the Reiger bound. Further research directions may include developing decoding algorithms
for polar codes adapted for channels with variable packet lengths
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AHHOTAIUA

Beenenne. Mcnpasienue ommnb0OK, BOZHUKAIONINX NPU XpaHEHHH, 00paboTKe U mepegaue AaHHBIX O3BOJSIET
obecmeynBaTh UX LEIOCTHOCTh. [l MPOTHBOAEHCTBUS 3THUM OIIMOKAM HCIOIB3YIOTCS METOABI KaHAJIbHOTO
KOIMPOBaHMs. BO3HMKAIOIINIA B peajJbHBIX CHCTEMaX IIyM YaCcTO MMEET KOPPEIUPOBAHHBIN XapaKTep, B TO BPEeMs KaKk
TPaJUIIOHHBIE TIOIXOABI K KOAHPOBAHUIO U JICKOTUPOBAHHIO OCHOBAHBI HA AEKOPPEISINH, YTO IIPHBOJHUT K CHIDKCHUIO
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Usage of polar codes for fixed and random length error bursts correction

MPE/IEbHBIX XapaKTEPUCTUK KaHAJIbHOTO KOAUPOBaHuUs. [1ospHbIe KOJbI, IPUHATHIC B KAYECTBE CXEMbI KOAUPOBAHUS
B COBPEMCHHOM CTaHAAPTE CBA3U IATOI'O IMOKOJICHUS, ITOKAa3bIBAOT HU3KHUE BEPOATHOCTH OLLII/I6](I/I IpH ICKOAUPOBAHUU
B KaHayiax 0e3 mamsaTu. AKTyaldbHOH SIBISIETCS 3a7a4a MCCIEI0BaHHs MPUTOJHOCTH TONSPHBIX KOJIOB IS KaHATIOB
C MaMATHIO, aHANN3A WX TTAKETHOW KOPPEKTHPYIOIIEH CIIOCOOHOCTH, a TaKKe CPaBHEHHE C M3BECTHBIMH METOAAMH
MOMEeXO0yCToiunBoro Koxauposanus. Meroa. st olleHKH MaKeTHOW KOPPEKTUPYIOIMIEH CITOCOOHOCTH HCIIOB30BaH
METOJI BEIYHCIICHUSI PAHTOB KaXKI0H U3 TIOAMATPHII IIPOBEPOTHOI MAaTPHITBI HOJISIPHOTO KoJla (PMKCHPOBAHHOTO pa3Mepa.
VYBenuueHne NakeTHOW KOPPEKTHPYIOIeil CHOCOOHOCTH IOJIIPHOTO KOJIa BO3MOXKHO C ITOMOIIBIO MTPEIOKESHHON
POy Phl IepeMekeHHsI. AHAIN3 ITAKeTHOH KOPPEKTUPYIOMeH CIIOCOOHOCTH MOJISPHBIX KOJAOB IMPOBOAUTCS IS
KO/10B HeOoubION UTMHEL. OCHOBHBIE Pe3yJIbTaThl. BHINOIHEH aHaIN3 ¥ CpaBHEHHE NMAaKeTHON KOPPEKTUPYIOIIeit
CIOCOOHOCTH MOJISIPHBIX KOJIOB ¢ KOJaMH, ONpeAesieMbIMH ClTy4aiiHON opokaarolieit MaTpuLeit, konamu ['mnbepra u
HHM3KOTUIOTHOCTHBIMHU KOAAMU. AHAJIN3 BEPOSITHOCTU OIIHOKH AEKOAUPOBAHUS MOKa3al, YTO CTAHAAPTHBIE alNTOPHTMbI
JEKOANPOBAHHS TIOJSIPHBIX KOOB HE MO3BOJISIOT JOCTHTATh MAJbIX BEPOATHOCTEH ommOoK. Takas ske BEpOSTHOCTh
ook aexoguposanwst 0,01, kak u it kanana ['mnbepra, 10cTUTaeTCs MONTAPHBIM KOZOM B IBONIHOM CHUMMETPHIHOM
KaHaje ¢ OoNbIIeH, ueM B JiBa pa3a Oe3yCIOBHOM BepOSTHOCTHIO OmuOKH. Obcy:kaeHne. PesymsraTs! nccinemxoBanus
MTOKA3bIBAIOT, YTO MAKETHAs! KOPPEKTHPYIOIasi CIIOCOOHOCTh CTaHAAPTHBIX MOJIIPHBIX KOJOB Maia. IIpenioxxeHHbIit
MOAXOJ] C MEPEMEKEHNEM YITydIllaeT IMaKeTHYI0 KOPPEKTUPYIONIYI0 CIIOCOOHOCTh M MO3BOJISIET IOCTUYb 3HAYCHHH,
O6nm3Kkux K rpanune Peiirepa. HanpaBnenuem JanbHEHIINX MCCIEIOBAaHUN MOXKET OBITH pa3paboTKa aJropuTMOB
JACKOOUPOBAHUA MOJSIPHBIX KOAOB, aAalITUPOBAHHBIX JJI1 KaHAJIOB C Jl.]'lPIHOﬁ IMMaKETOB, HMCIOIIINX cny'-lal?n-[y}o JAJIAHY.
KiroueBblie ciioBa

KaHaJl ¢ IaMsAThio, KaHas [ unbepra, nosispHbIe KOJIbl, IEPEeMEKEHUE

baarogapnoctu

Pabora moarorosnena npu ¢puHaHcoBoi moaaepkke Poccuiickoro HayuyHoro ¢onaa, mpoekt Ne 22-19-00305
«IIpocTpaHCTBEHHO-BPEMEHHbIE CTOXaCTHIECKHE MOJIETH OECITPOBOIHBIX CETEH ¢ OONBIINM YUCIIOM TTOJIb30BaTEEi».

Ccplika 1J1 nuTHpPoBaHus: OBUMHHUKOB A.A. Vcnonp30BaHKe MOISPHBIX KOAOB IS HCTIPABICHHS ITAKETOB OLTMOOK
CITy4alfHOH M AETEPMUHUPOBAHHOM JUTHHBI // HaydHO-TEXHUYECKHII BECTHUK HH(POPMALMOHHBIX TEXHOIOTHIA, MEXaHUKH

u ontukn. 2025. T. 25, Ne 1. C. 53-60 (na anr. 513.). doi: 10.17586/2226-1494-2025-25-1-53-60

Introduction

Information in the modern world is one of the key
resources. The procedures of processing, transmitting,
and storing information are often accompanied by
the occurrence of errors. These processes are modeled
mathematically, and errors are often dependent, leading
to the formation of error bursts or memory in the channel.
In the absence of error dependence, it is assumed that
the channel has no memory. The memory effect in data
transmission channels can be caused by various physical
characteristics, such as multipath propagation, signal
scattering, or the peculiarities of data storage equipment
[1]. Among the widely used mathematical models for
describing channels with memory are the Gilbert channel,
the Gilbert-Elliott channel, and the Rayleigh fading channel
with dependent fading, inter-symbol interference channel
models, and others. To correct errors, coding theory
offers the use of error-correcting codes, which introduce
redundancy into the data to enable error detection and
correction. Reliability issues, including the introduction
of information redundancy, are a crucial task in the
development of info communication systems [2, 3].

Polar codes, proposed by Erdal Arikan in 2009 [4],
became the first codes with a clear construction capable
of asymptotically achieving the capacity of a symmetric
channel with simple encoding and decoding procedures.
Recently, interest in polar codes has significantly increased
due to their inclusion in the fifth-generation wireless
communication standard, where they are particularly used
for control channel coding. The theoretical analysis of
polarization properties for channels with memory has been
examined in [5, 6].

This paper will investigate the burst error-correcting
capabilities of polar codes, with a focus on their application

in channels with bursts. A comparison of the burst error-
correcting capabilities of polar codes with other error-
correcting methods will be presented, along with an
analysis of the decoding error probability of polar codes in
channels with memory. The results will also be compared
with those obtained using other error-correcting methods.

Channels with memory

Let X and Y be the alphabets of the input and
output symbols of the channel, respectively. This work
considers discrete-time channels, i.e., channels where
the transmission and reception of messages occur at
discrete moments in time. A communication channel is
defined by a set of transition probabilities p(y|x) for any
XEX, yeEY Letx =[xg, ..., xy1] and 'y = [y, ..., Yn_1]
be sequences of length N at the input and output of the
channel, respectively. The effect of noise in the channel on
the transmitted information is described by an error vector
e such that y = x + e. Formally, a memoryless channel is
defined as a channel for which the following holds [7]:

N-1
pyIx) = g)p(yi\xf)-

One common type of memoryless channel is the Binary
Symmetric Channel (BSC), described by the transition
error probability p, with the input and output alphabets
X=Y=1{0,1}.

One of the key characteristics of a communication
channel is its transmission rate. The channel capacity
refers to the maximum data transmission rate at which
communication can be reliable, meaning with an arbitrarily
low error probability. C. Shannon proved that there exist
coding methods that can ensure reliable communication at
rates approaching the channel capacity. It was also shown
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that the capacity of a channel with memory exceeds the
capacity of a channel where memory is not accounted
for (e.g., when channel decorrelation is applied using
interleaving).

As mentioned earlier, in real communication channels,
transmission errors are not independent. The causes of
dependency between symbols can include the physical
properties of the channel, such as signal multipath
propagation in fading and scattering channels, the physical
principles of information storage, or the organizational
structure in data storage systems. The simplest model
describing a channel with memory is a two-state channel
model. Within the two-state model, one can consider a
Markov model, the Gilbert model [8], and the Gilbert-
Elliott (GE) model [9].

The GE model was proposed by E. Elliott in 1963 and
is a generalization of the Gilbert channel model introduced
in 1960. The GE model describes a discrete channel with
memory, where the transition to the next state is determined
by the previous state. We will use traditional notations
for this model, where the GE channel is described by two
states: “good” (G) and “bad” (B). In the “good” state, the
probability of a bit error in the channel is p, and in the
“bad” state, it is pg. In the Gilbert model, it is assumed
that p is always equal to zero. Let the probability of
transitioning from the “good” state to the “bad” state
be denoted as Pgp, and the probability of transitioning
from the “bad” state to the “good” state as Pps. The
unconditional probabilities of being in states B and G are

Pgp Ppg
= ,PG: .
Pgp + Ppg Pgp + Ppg

Pp

Using the transition probabilities of the GE channel,
the unconditional bit error probability can be calculated as:

PsPes + pePpe
= ppPy+poPg = ——2LCE 1
Pe=DpPp T PcPg Poyt Poe (1)

If an infinite-length interleaving procedure is applied to
the output of the channel described by the two-state model,
a memoryless channel is obtained, which is described by
the BSC model with the transition probability (1). Such a
channel will hereafter be referred to as equivalent (to the
original two-state channel), and the value p, will be referred
to as the equivalent error probability.

Burst error-correcting capability of linear codes

In channels with memory, the error vector represents
a burst, meaning an error vector in which non-zero
elements tend to group together. The article examines
bursts of length /, defined as vectors in which all non-zero
components are located in / consecutive positions, with
the first and last positions being non-zero. For example,
the error vector e =(0,0,0,0,1,0,1,1,0,1,0,0,0, 0, 0)
represents a burst of length 6. A linear code capable of
correcting all error bursts of length / or less, but not all
bursts of length / + 1, is called a code correcting error
bursts of length /, or a code with a burst error-correcting
capability of /. When correcting bursts at a given code

length 7, number of information symbols %, and burst error-
correcting capability /, the goal is to construct a code (, k)
with the smallest possible redundancy (the number of check
symbols) » = n — k. Next, we will establish certain limits on
n—k for a given / or on / for a given n — k [10].

A necessary condition for a linear code (n, k) to correct
all error bursts of length / or less is that no burst of length
2[ or less can be a codeword. The number of check symbols
in a linear code (n, k) which contains no bursts of length b
or less as codewords, must be at least b (i.e. n — k > b).
The number of check symbols in a code correcting error
bursts of length / must be at least 2/, i.e., n — k> 2l. For
given n and £, this implies that the burst error-correcting
capability of the (n, k) code is no more than [(n - k)/2J,
orl< l(n - k)/ZJ. This is the upper bound on the burst
error-correcting capability of a linear code (n, k), known
as the Reiger bound. Codes that meet the Reiger bound
are considered optimal. The ratio z =2//(n — k) isused as a
measure of the burst error-correcting efficiency of the code.
An optimal code has a burst error-correcting efficiency of
one.

The following approach can be used to assess the burst
error-correcting capability of a linear code [11]. The burst
error-correcting capability of a code with a parity-check
matrix H is the maximum / for which any matrix formed
by two submatrices of / consecutive columns of H has
a rank equal to 2/. By successively reducing the value
of [ from l(n - k)/ZJ and considering all possible pairs of
submatrices, the maximum correctable burst length /., can
be found with polynomial complexity. From the described
procedure, it follows that for a code to correct error bursts
of length /, the code must not only lack codewords forming
bursts of length 2/, but also codewords forming two bursts
of / symbols.

Modern communication standards employ various
error-correcting code constructions that help ensure reliable
data transmission in the presence of noise and distortions.
Among the most common are Low-Density Parity-Check
(LDPC) codes and polar codes. The error-correcting
performance of these constructions has been widely studied
for memoryless channels, but the study of the properties of
codes and their error-correcting performance in channels
with memory is a less developed topic.

The burst error-correcting capability of LDPC codes
based on block-permutation construction has been studied
in the literature. It is known that for a block-permutation
LDPC code with zero blocks, the correctable burst
length cannot exceed the block size. The burst error-
correcting capability of LDPC codes constructed using the
Progressive Edge Growth (PEG) algorithm was evaluated
in [12]. The burst error identification problem for LDPC
codes was investigated in [13]. Decoding of polar codes
without channel state information knowledge is considered
in [14].

Polar code and its burst error-correcting capability

Polar codes belong to the class of binary linear block
codes. The encoding procedure of polar codes is based
on channel polarization, which is described by a linear
transformation defined by the matrix G = F®", where
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1 07. ..
F= [1 l] is the polarization kernel, and ®m denotes

the m-fold Kronecker product of matrix F with itself,
where m = log,n, and n is the length of the codeword of
the constructed code. A polar code is defined by a set of
parameters (n, k, 4,), where n is the codeword length, &
is the number of information symbols, and A4, is the set
of “frozen” symbols whose values are predetermined,
usually equal to zero, with |4 |=n—k, 4. < {0, ...,n—1}.
Methods for constructing polar codes are detailed in [15].
One of the most common approaches to constructing the set
of frozen symbols is the Polarization Weight (PW) method.
It should be noted that the well-known Reed-Muller (RM)
codes from coding theory can also be described as polar
codes.

The non-systematic encoding of polar codes is
described by the expression x = uG, where x is a codeword,
u is a vector including the information symbols (u; & A4,
1 <i<n)and “frozen” positions (; € 4., 1 <i<n).

The classic method for decoding polar codes is the
successive cancellation algorithm which does not provide
maximum likelihood decoding and has a relatively high
error probability. To reduce the error probability of
decoding polar codes, I. Tal and A. Vardy [15] proposed
the list decoding algorithm, which involves considering
multiple paths at each level of the tree, with the maximum
number of paths limited by the algorithm parameter L.
List decoding with a sufficiently large L approaches near-
maximum likelihood decoding.

We will now analyze the burst error-correcting
capability of polar codes defined by the matrix G, = F®~.
Fig. 1 shows an example of the generator matrix of a
(64, 42) RM code. As can be seen from the figure, the
rows of the generator matrix form short-length bursts. Thus,
the very procedure for constructing the generator matrix
of a polar code results in a structure with low correcting
capability for burst errors.

Next, let’s consider the possibility of constructing codes
with improved burst error-correcting capability based on
the polar code structure. We apply a random interleaving
procedure, defined by the random permutation of the
columns of the polar code generator matrix, resulting in
a code referred to as equivalent to the polar code. It is
known that switching to an equivalent code via interleaving

—_
o

N
(e}

(O8]
(e}

Generator matrix row numbers

N
(e}

Generator matrix column numbers

Fig. 1. Example of a generator matrix of a (64, 42) polar code

preserves the code minimum distance (i.e., does not
alter its ability to correct independent errors), but it can
significantly impact the value of /... Fig. 2 presents the
results of calculating the burst error-correcting capability
of the RM code, which is a special case of a polar code,
with length n = 64 and various values of r = {22, 42, 57}.

The figure also shows a line corresponding to the
Reiger bound. The burst error-correcting capability for the
original code without interleaving is depicted in the figure
with the symbol “0”, and for the interleaved codes with the
symbol “*”. As can be seen from the figure, interleaving
increases the burst error-correcting capability and yields
codes with /., values close to the Reiger bound and with

max
greater efficiency z.

Comparative analysis of burst error-correcting
capability of code constructions

In this section, we compare the burst error-correcting
capability of polar codes (RM and PW constructions), their
equivalent codes, and several other code constructions:
codes defined by a random generator matrix, Gilbert codes
specified by a (2 x 3) block-permutation parity-check
matrix, and LDPC codes constructed using PEG algorithm.
Similar to polar codes, we also consider equivalent codes
for these constructions. To build equivalent codes, samples
of 100 random permutations was generated.

Fig. 3 shows the burst error-correcting capability for
random codes and Gilbert codes. For clarity, only some of
the results for equivalent codes are displayed in the figures.
Since a code equivalent to a random code is still a random
code, we observe a small scatter of /,,, values in Fig. 3, a.
It is worth noting that random linear codes are located near
the Reiger bound. Fig. 3, » shows the results for Gilbert
codes. The considered Gilbert codes lie on the Reiger
bound, as confirmed by the experiments. Their equivalent
codes disrupt the block-permutation structure, leading to a
sharp decrease in burst error-correcting capability.

Fig. 4 shows the results for the PEG construction and
Reed-Muller codes. The burst error-correcting capability
of PEG codes is quite close to the Reiger bound. In rare

30+ Reiger bound -
. o (64, 7) original
= * (64, 7) interleaved P
£ 7 (64, 22) original -
g (64, 22) interleaved
20k o (64,42) original _
8 * (64, 42) interleaved
3
=R o i
3
g
£ 10 :
[}
g :
3
A * .

o
0 1 1 1 L 1 1
0 20 40 60
Number of parity bits

Fig. 2. Burst error-correcting capability of the Reed-Muller
code and equivalent codes
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Fig. 3. Estimates of burst error-correcting capability for () codes defined by a random generator matrix and (b) Gilbert codes
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Fig. 4. Estimates of burst error-correcting capability for (a) low-density codes based on the PEG construction and (b) Reed-Muller
codes with n =128

cases, equivalent codes slightly increase the length of the
correctable burst, but more often, interleaving degrades
the burst error-correcting capability. Reed-Muller codes, as
noted earlier, exhibit extremely low [, values, but these
can be significantly increased through interleaving.

Fig. 5, a presents the results for the PW polar code
construction. The results are similar to those of RM codes
in Fig. 4, b.

Fig. 5, b provides comparative results for all the
considered constructions with parameters n = 128, k = 64
(results for codes with other parameters are similar). As
can be seen from the figure, while polar codes initially
have an extremely low correctable burst length, they can be
improved with interleaving. The resulting equivalent polar
codes have a burst error-correcting capability comparable
to other constructions and are close to the Reiger bound.

It should be noted that existing decoding methods for
polar codes are tailored to their structure and cannot be
applied to equivalent codes. Thus, the obtained results
enable the construction of error-correcting codes based on
polar codes that can be effectively used for correcting single

burst errors. However, decoding such codes remains an
open challenge, or general burst error-correcting algorithms
may need to be applied [16].

Experimental results of polar codes error correction
capability in channels with memory

In the previous section, we compared various code
constructions based on their burst error-correcting
capability. Maximizing burst error-correcting capability
is useful when the channel does not produce bursts longer
or more severe than the code can correct. However, in
many channel models with memory, including the GE
channel model with two states, burst length and burst
severity are random variables. For this reason, burst error-
correcting capability is an indirect characteristic describing
the code error-correcting properties. Therefore, we will
analyze the decoding error probability of polar codes with
various decoding parameters in the Gilbert channel. Using
simulation, we will compare the obtained error probability
estimates with the error probability in a BSC with a
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Fig. 5. Estimates of burst error-correcting capability for n = 128 (a) Polarization Weight polar codes and (b) comparing different
constructions

transition probability equivalent to the error probability
p. (1). The decoding of polar codes is performed using
the CRC-Aided Successive Cancellation List (CA-
SCL) algorithm with a list size L and a CRC polynomial
e = X8+ x7+x6 + x4+ x2 + 1. The PW procedure is used
to construct the polar code.

We will examine the decoding error probability as a
function of the equivalent bit error probability p, in the
channel. The values of p, will be obtained by fixing the
parameters Pgp = 0.01, p; =0, and pp = 0.5 in equation (1),
and varying Ppg. These simulation parameters correspond
to the use of a Gilbert channel. Fig. 6 shows the decoding
error probability with list size L = 8 for a polar code with
parameters n = 256, k = 128 in the Gilbert channel (G)
and the BSC with corresponding values of p,. Dotted
curves are also presented, showing the probability that
the burst length b generated by the channel will exceed
the burst error-correcting capability. Let us denote the
burst error-correcting capability of the code, according

100 S e o O x-—-x——'—.ﬁ——-——-’-__;,
2
%
£ 10}
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5
=
)
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g
] _
: v -L=8(G)
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Pr (b > by)
esaytesis Pr(b>bp)
1073 .
1072 o >

Fig. 6. Comparison of decoding error probability for a polar
code with n =256, k= 128 and different list sizes L in the
Gilbert channel and BSC

to the Reiger bound, as by. Let the burst error-correcting
capability calculated using the algorithm described in [11]
be denoted as bp. Then, the probabilities that the burst
length generated by the channel will exceed the respective
burst error-correcting capabilities bp and bp are denoted as
Pr(b > by) and Pr(b > bp).

Although at high error probability intervals, decoding
in the BSC lags behind in terms of error probability
compared to the Gilbert channel, the error probabilities in
this range are quite high (close to one). As the equivalent
error probability decreases, the BSC results significantly
outperform those for the Gilbert channel. It is important to
consider that the BSC simulation with transition probability
(1) assumes infinite-length interleaving, and with a limited
buffer size, error probabilities would be higher. Overall, it
can be concluded that polar codes traditionally used with
the classic decoder perform poorly in the presence of error
bursts. This conclusion is consistent with the analysis of the
burst error-correcting capability of polar codes. Moreover,
as indicated by the results of the dotted curves, i.e., the
probability that the burst length in the channel exceeds the
burst error-correcting capability, even if the decoder were
correcting bursts, in channels with random burst lengths,
this would not ensure low decoding error probability due
to the high probability of exceeding the burst-correcting
limit. This means that in special channels with fixed burst
lengths, burst error-correcting capability needs to be
increased (for which interleaving was proposed). However,
in channels with random burst lengths, this is insufficient,
and a decoder is needed that not only corrects bursts but
also corrects error patterns specific to Gilbert and GE
channels.

Fig. 7 show the decoding error probability graphs for
polar codes with lengths n = 64 and n = 256 and rates
R ={1/4, 1/2, 3/4}. The list size used for decoding is
L = 8. The results obtained at rates 1/4 and 3/4 generally
correspond to those obtained earlier for rate 1/2, as shown
in Fig. 6.
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Fig. 7. Decoding error probability for: n = 64 (a); n =256 (b)
Conclusion enhances the error-correcting capability, bringing it closer

In this study, we evaluated the burst error-correcting
capabilities of polar codes in channels with memory and
compared them to other error-correcting coding methods.
Our analysis revealed that, while standard polar codes
exhibit low burst error-correcting performance, this
limitation can be significantly improved by applying an
interleaving procedure. The proposed interleaving method
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